The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of weed is to make the analysis of EM-DAT and related datasets easier, with most of the pre-processing abstracted away by functions in this package!
Installation of the following packages : readxl, dplyr, magrittr, tidytext, stringr, tibble, geonames, countrycode, purrr, tidyr, forcats, ggplot2, sf, rgeos.
You also need a geonames user account if you intend to use the geocoding functionality of this package. Info on how to get one for free is available here.
You can install the development version from GitHub with:
# install.packages("devtools")
::install_github("rammkripa/weed") devtools
This is a basic example which shows a common weed
workflow:
<- read_emdat("/Users/ramkripa/Desktop/Tk2.xlsx", file_data = TRUE)
em #> New names:
#> * `` -> ...1
#> * `` -> ...2
<- em$disaster_data %>%
locationized_data tail() %>%
split_locations(column_name = "Location") %>%
head()
%>%
locationized_data select(`Dis No`, Location,location_word, Latitude, Longitude, uncertain_location_specificity)
#> # A tibble: 6 x 6
#> `Dis No` Location location_word Latitude Longitude uncertain_locati…
#> <chr> <chr> <chr> <chr> <chr> <lgl>
#> 1 2019-051… Handeni district… handeni <NA> <NA> TRUE
#> 2 2019-051… Handeni district… tanga <NA> <NA> TRUE
#> 3 2019-056… Mwanza district mwanza <NA> <NA> FALSE
#> 4 2020-016… West Pokot, Elge… west pokot 116.343 365.935 FALSE
#> 5 2020-016… West Pokot, Elge… elgeyo marak… 116.343 365.935 FALSE
#> 6 2020-016… West Pokot, Elge… kisumu 116.343 365.935 FALSE
There are two problems with the Dataset as it exists here.
Half of our observations, even in this toy dataset, don’t have Lat/Long data
The Lat/Long here is blatantly wrong.
Lat > 90? Long > 360? How is this possible?
So, we must recode this Lat/Long data
%>%
locationized_data percent_located_locations(lat_column = "Latitude",
lng_column = "Longitude")
A reminder that you need a geonames username to access this feature
of the weed
package.
More info available here.
<- locationized_data %>%
geocoded_data geocode(geonames_username = dummy_name)
%>%
geocoded_data select(`Dis No`, Location,location_word, lat, lng)
#> # A tibble: 6 x 5
#> `Dis No` Location location_word lat lng
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2019-0515-… Handeni district (Tanga Region) handeni -5.55 38.3
#> 2 2019-0515-… Handeni district (Tanga Region) tanga -5.07 39.1
#> 3 2019-0562-… Mwanza district mwanza -2.52 32.9
#> 4 2020-0164-… West Pokot, Elgeyo Marakwet, Kisumu, H… west pokot 1.75 35.2
#> 5 2020-0164-… West Pokot, Elgeyo Marakwet, Kisumu, H… elgeyo marak… 0.516 35.5
#> 6 2020-0164-… West Pokot, Elgeyo Marakwet, Kisumu, H… kisumu -0.102 34.8
Side note: These Lat/Long data look much better than before, given that Kenya is close to the equator!
%>%
geocoded_data percent_located_locations()
%>%
geocoded_data percent_located_disasters()
<- geocoded_data %>%
geocoded_data located_in_box(top_left_lat = 0,
top_left_lng = 35,
bottom_right_lat = -6,
bottom_right_lng = 40)
%>%
geocoded_data select(`Dis No`, Location,location_word, lat, lng, in_box)
#> # A tibble: 6 x 6
#> `Dis No` Location location_word lat lng in_box
#> <chr> <chr> <chr> <dbl> <dbl> <lgl>
#> 1 2019-0515… Handeni district (Tanga Region) handeni -5.55 38.3 TRUE
#> 2 2019-0515… Handeni district (Tanga Region) tanga -5.07 39.1 TRUE
#> 3 2019-0562… Mwanza district mwanza -2.52 32.9 FALSE
#> 4 2020-0164… West Pokot, Elgeyo Marakwet, Kis… west pokot 1.75 35.2 FALSE
#> 5 2020-0164… West Pokot, Elgeyo Marakwet, Kis… elgeyo marak… 0.516 35.5 FALSE
#> 6 2020-0164… West Pokot, Elgeyo Marakwet, Kis… kisumu -0.102 34.8 FALSE
%>%
geocoded_data located_in_shapefile(shapefile_name = s_file_name) %>%
select(`Dis No`, Location, location_word, lat, lng, in_box, in_shape)
#> Reading layer `SH_mask' from data source `/Users/ramkripa/Desktop/Projects/emdat_proj/shape_data/SH_mask.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 1 feature and 1 field
#> geometry type: MULTIPOLYGON
#> dimension: XY
#> bbox: xmin: -178.9 ymin: -50 xmax: 179.85 ymax: 50
#> geographic CRS: WGS 84
#> Warning: `rename_()` is deprecated as of dplyr 0.7.0.
#> Please use `rename()` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_warnings()` to see where this warning was generated.
#> although coordinates are longitude/latitude, st_contains assumes that they are planar
#> # A tibble: 6 x 7
#> `Dis No` Location location_word lat lng in_box in_shape
#> <chr> <chr> <chr> <dbl> <dbl> <lgl> <lgl>
#> 1 2019-0515… Handeni district (Tanga… handeni -5.55 38.3 TRUE TRUE
#> 2 2019-0515… Handeni district (Tanga… tanga -5.07 39.1 TRUE TRUE
#> 3 2019-0562… Mwanza district mwanza -2.52 32.9 FALSE FALSE
#> 4 2020-0164… West Pokot, Elgeyo Mara… west pokot 1.75 35.2 FALSE TRUE
#> 5 2020-0164… West Pokot, Elgeyo Mara… elgeyo marak… 0.516 35.5 FALSE TRUE
#> 6 2020-0164… West Pokot, Elgeyo Mara… kisumu -0.102 34.8 FALSE TRUE
%>%
geocoded_data nest_locations() %>%
select(`Dis No`, location_data)
#> # A tibble: 6 x 2
#> `Dis No` location_data
#> <chr> <list<tbl_df[,4]>>
#> 1 2019-0515-TZA [2 × 4]
#> 2 2019-0515-TZA [2 × 4]
#> 3 2019-0562-TZA [1 × 4]
#> 4 2020-0164-KEN [3 × 4]
#> 5 2020-0164-KEN [3 × 4]
#> 6 2020-0164-KEN [3 × 4]
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.