The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
You can install:
The latest release version from CRAN with
install.packages("wbstats")or
The latest development version from github with
remotes::install_github("pachadotdev/wbstats")library(wbstats)
# Population for every country from 1960 until present
d <- wb_data("SP.POP.TOTL")
    
head(d)
#> # A tibble: 6 × 9
#>   iso2c iso3c country    date SP.POP.TOTL unit  obs_status footnote last_updated
#>   <chr> <chr> <chr>     <dbl>       <dbl> <chr> <chr>      <chr>    <date>      
#> 1 AF    AFG   Afghanis…  2024    42647492 <NA>  <NA>       <NA>     2025-07-01  
#> 2 AF    AFG   Afghanis…  2023    41454761 <NA>  <NA>       <NA>     2025-07-01  
#> 3 AF    AFG   Afghanis…  2022    40578842 <NA>  <NA>       <NA>     2025-07-01  
#> 4 AF    AFG   Afghanis…  2021    40000412 <NA>  <NA>       <NA>     2025-07-01  
#> 5 AF    AFG   Afghanis…  2020    39068979 <NA>  <NA>       <NA>     2025-07-01  
#> 6 AF    AFG   Afghanis…  2019    37856121 <NA>  <NA>       <NA>     2025-07-01wbstatslibrary(tidyverse)
library(wbstats)
my_indicators <- c(
  life_exp = "SP.DYN.LE00.IN", 
  gdp_capita ="NY.GDP.PCAP.CD", 
  pop = "SP.POP.TOTL"
  )
d <- wb_data(my_indicators, start_date = 2016)
d %>%
  left_join(wb_countries(), "iso3c") %>%
  ggplot() +
  geom_point(
    aes(
      x = gdp_capita, 
      y = life_exp, 
      size = pop, 
      color = region
      )
    ) +
  scale_x_continuous(
    labels = scales::dollar_format(),
    breaks = scales::log_breaks(n = 10)
    ) +
  coord_trans(x = 'log10') +
  scale_size_continuous(
    labels = scales::number_format(scale = 1/1e6, suffix = "m"),
    breaks = seq(1e8,1e9, 2e8),
    range = c(1,20)
    ) +
  theme_minimal() +
  labs(
    title = "An Example of Hans Rosling's Gapminder using wbstats",
    x = "GDP per Capita (log scale)",
    y = "Life Expectancy at Birth",
    size = "Population",
    color = NULL,
    caption = "Source: World Bank"
  ) 
ggplot2 to
map wbstats datalibrary(rnaturalearth)
library(tidyverse)
library(wbstats)
ind <- "SL.EMP.SELF.ZS"
indicator_info <- filter(wb_cachelist$indicators, indicator_id == ind)
ne_countries(returnclass = "sf") %>%
  left_join(
    wb_data(
      c(self_employed = ind), 
         mrnev = 1
          ),
    c("iso_a3" = "iso3c")
  ) %>%
  filter(iso_a3 != "ATA") %>% # remove Antarctica
  ggplot(aes(fill = self_employed)) +
  geom_sf() +
  scale_fill_viridis_c(labels = scales::percent_format(scale = 1)) +
  theme(legend.position="bottom") +
  labs(
    title = indicator_info$indicator,
    fill = NULL,
    caption = paste("Source:", indicator_info$source_org) 
  )
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.