The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

vtreat data splitting

John Mount, Nina Zumel

2024-06-12

vtreat data set splitting

Motivation

vtreat supplies a number of data set splitting or cross-validation planning facilities. Some services are implicit such as the simulated out of sample scoring of high degree of freedom derived variables (such as catB, catN,catD, and catP; see here for a list of variable types). Some services are explicit such as vtreat::mkCrossFrameCExperiment and vtreat::mkCrossFrameNExperiment (please see here). And there is even a user-facing cross-validation planner in vtreat::buildEvalSets (try help(buildEvalSets) for details).

We (Nina Zumel and John Mount) have written a lot on structured cross-validation; the most relevant article being Random Test/Train Split is not Always Enough. The point is that in retrospective studies random test/train split is at best a simulation of how a model will be applied in the future. It is not an actual experimental design as in a randomized control trial. To be an effective simulation you must work to preserve structure that will be true in future application.

The overall idea is: a better splitting plan helps build a model that actually performs better in practice. And porting such a splitting plan back to your evaluation procedures gives you a better estimate of this future model performance.

A random test/train split attempts to preserve the following:

Note if there is a concept change (also called issues of non-stationarity) then future data is already not statistically exchangeable with training data (so can’t preserve a property you never had). However even if your future data starts exchangeable with training data there is at least one (often) un-modeled difference between training data and future application data:

This is usually an unstated structure of your problem solving plan: use annotated data from the past to build a supervised model for future un-annotated data.

Examples

With the above discussion under our belt we get back to the problem at hand. When creating an appropriate test/train split, we may have to consider one or more of the following:

Our goal is for vtreat to be a domain agnostic, y-aware data conditioner. So vtreat should y-stratify its data splits throughout. Prior to version 0.5.26 vtreat used simple random splits. Now with version 0.5.26 (currently available from Github) vtreat defaults to stratified sampling throughout. Respecting things like locality of record grouping or ordering of time are domain issues and should be handled by the analyst.

Any splitting or stratification plan requires domain knowledge and should represent domain sensitive trade-off between the competing goals of:

As of version 0.5.26 vtreat supports this by allowing a user specified data splitting function where the analyst can encode their desired domain invariants. The user-implemented splitting function should have the signature

function(nRows,nSplits,dframe,y)

where

The function should return a list of lists. The ith element should have slots train and app, where [[i]]$train designates the training data used to fit the model that evaluates the data designated by [[i]]$app.

This is easiest to show through an example:

vtreat::kWayStratifiedY(3,2,NULL,NULL)
## [[1]]
## [[1]]$train
## [1] 1 3
## 
## [[1]]$app
## [1] 2
## 
## 
## [[2]]
## [[2]]$train
## [1] 2
## 
## [[2]]$app
## [1] 1 3
## 
## 
## attr(,"splitmethod")
## [1] "kwaycross"

As we can see vtreat::oneWayHoldout builds three split sets where in each set the “application data rows” is a single row index and the corresponding training rows are the complementary row indexes. This is a leave-one-out cross validation plan.

vtreat supplies a number of cross validation split/plan implementations:

The function buildEvalSets takes one of the above splitting functions as input and returns a cross-validation plan that instantiates the desired splitting, while also guarding against corner cases. You can also explicitly specify the splitting plan when designing a vtreat variable treatment plan using designTreatments[N\C] or mkCrossFrame[N\C]Experiment.

For issues beyond stratification the user may want to supply their own splitting plan. Such a function can then be passed into any vtreat operation that takes a splitFunction argument (such as mkCrossFrameNExperiment, designTreatmentsN, and many more). For example we can pass a user defined splitFn into vtreat::buildEvalSets as follows:

For example to use a user supplied splitting function we would write the following function definition.

# This method is not a great idea as the data could have structure that strides
# in the same pattern as this split.
# Such technically is possible for any split, but we typically use
# pseudo-random structure (that is not the same across many potential
# split calls) to try and make it unlikely such structures
# match often.
modularSplit <- function(nRows,nSplits,dframe,y) {
  group <- seq_len(nRows) %% nSplits
  lapply(unique(group),
         function(gi) {
           list(train=which(group!=gi),
                app=which(group==gi))
         })
}

This function can then be passed into any vtreat operation that takes a splitFunction argument (such as mkCrossFrameNExperiment, designTreatmentsN, and many more). For example we can pass the user defined splitFn into vtreat::buildEvalSets as follows:

vtreat::buildEvalSets(nRows=25,nSplits=3,splitFunction=modularSplit)
## [[1]]
## [[1]]$train
##  [1]  2  3  5  6  8  9 11 12 14 15 17 18 20 21 23 24
## 
## [[1]]$app
## [1]  1  4  7 10 13 16 19 22 25
## 
## 
## [[2]]
## [[2]]$train
##  [1]  1  3  4  6  7  9 10 12 13 15 16 18 19 21 22 24 25
## 
## [[2]]$app
## [1]  2  5  8 11 14 17 20 23
## 
## 
## [[3]]
## [[3]]$train
##  [1]  1  2  4  5  7  8 10 11 13 14 16 17 19 20 22 23 25
## 
## [[3]]$app
## [1]  3  6  9 12 15 18 21 24
## 
## 
## attr(,"splitmethod")
## [1] "userfunction"

As stated above, the vtreat library code will try to use the user function for splitting, but will fall back to an appropriate vtreat function in corner cases that the user function may not handle (for example, too few rows, too few groups, and so on). Thus the user code can assume it is in a reasonable situation (and even safely return NULL if it can’t deal with the situation it is given). For example the following bad user split is detected and corrected:

badSplit <- function(nRows,nSplits,dframe,y) {
  list(list(train=seq_len(nRows),app=seq_len(nRows)))
}
vtreat::buildEvalSets(nRows=5,nSplits=3,splitFunction=badSplit)
## Warning in doTryCatch(return(expr), name, parentenv, handler):
## vtreat::buildEvalSets user carve-up rejected: train and application slots
## overlap
## [[1]]
## [[1]]$train
## [1] 1 2 4 5
## 
## [[1]]$app
## [1] 3
## 
## 
## [[2]]
## [[2]]$train
## [1] 2 3 5
## 
## [[2]]$app
## [1] 4 1
## 
## 
## [[3]]
## [[3]]$train
## [1] 1 3 4
## 
## [[3]]$app
## [1] 2 5
## 
## 
## attr(,"splitmethod")
## [1] "kwaycross"

Notice above the returned split does not meet all of the original desiderata, but is guaranteed to be a useful data partition.

Implementations

The file outOfSample.R contains worked examples. In particular we would suggest running the code displayed when you type any of:

For example from help(kWayStratifiedY) we can see that the distribution of y is much more similar in each fold when we stratify than when we don’t:

library('vtreat')
set.seed(23255)
d <- data.frame(y=sin(1:100))

# stratified 5-fold cross validation
pStrat <- kWayStratifiedY(nrow(d),5,d,d$y)
# check if the split is a good partition
check = vtreat::problemAppPlan(nrow(d),5,pStrat,TRUE)
if(is.null(check)) {
  print("Plan is good")
} else {
  print(paste0("Problem with plan: ", check))
}
## [1] "Plan is good"
d$stratGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pStrat)

# unstratified 5-fold cross validation
pSimple <- kWayCrossValidation(nrow(d),5,d,d$y)
# check if the split is a good partition; return null if so
check = vtreat::problemAppPlan(nrow(d),5,pSimple,TRUE)
if(is.null(check)) {
  print("Plan is good")
} else {
  print(paste0("Problem with plan: ", check))
}
## [1] "Plan is good"
d$simpleGroup <- vtreat::getSplitPlanAppLabels(nrow(d),pSimple)

# mean(y) for each fold, unstratified
tapply(d$y,d$simpleGroup,mean)
##            1            2            3            4            5 
## -0.059622525  0.068139081 -0.007774052  0.099774019 -0.106875074
# standard error of mean(y)
sd(tapply(d$y,d$simpleGroup,mean))
## [1] 0.08606286
# mean(y) for each fold, unstratified
tapply(d$y,d$stratGroup,mean)
##            1            2            3            4            5 
##  0.008797500 -0.011530915 -0.010448401  0.009648950 -0.002825685
# standard error of mean(y)
sd(tapply(d$y,d$stratGroup,mean))
## [1] 0.01015539

Notice the increased similarity if distributions.

Conclusion

Controlling the way data is split in cross-validation – preserving y-distribution, groups, and even ordering – can improve the real world performance of models trained on such data. Obviously this adds some complexity and “places to go wrong”, but it is a topic worth learning about.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.