The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The vroom package contains one main function vroom()
which is used to read all types of delimited files. A delimited file is
any file in which the data is separated (delimited) by one or more
characters.
The most common type of delimited files are CSV (Comma Separated
Values) or TSV (Tab Separated Values) files, typically these files have
a .csv
and .tsv
suffix respectively.
This vignette covers the following topics:
To read a CSV, or other type of delimited file with vroom pass the
file to vroom()
. The delimiter will be automatically
guessed if it is a common delimiter; e.g. (“,” “” ” “|” “:” “;”). If the
guessing fails or you are using a less common delimiter specify it with
the delim
parameter. (e.g. delim = ","
).
We have included an example CSV file in the vroom package for use in
examples and tests. Access it with
vroom_example("mtcars.csv")
# See where the example file is stored on your machine
file <- vroom_example("mtcars.csv")
file
#> [1] "/private/tmp/RtmpDxlsSX/Rinst130257392eda0/vroom/extdata/mtcars.csv"
# Read the file, by default vroom will guess the delimiter automatically.
vroom(file)
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
# You can also specify it explicitly, which is (slightly) faster, and safer if
# you know how the file is delimited.
vroom(file, delim = ",")
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
If you are reading a set of files which all have the same columns (as
in, names and types), you can pass the filenames directly to
vroom()
and it will combine them into one result. vroom’s
example datasets include several files named like
mtcars-i.csv
. These files contain subsets of the
mtcars
data, for cars with different numbers of cylinders.
First, we get a character vector of these filepaths.
ve <- grep("mtcars-[0-9].csv", vroom_examples(), value = TRUE)
files <- sapply(ve, vroom_example)
files
#> mtcars-4.csv
#> "/private/tmp/RtmpDxlsSX/Rinst130257392eda0/vroom/extdata/mtcars-4.csv"
#> mtcars-6.csv
#> "/private/tmp/RtmpDxlsSX/Rinst130257392eda0/vroom/extdata/mtcars-6.csv"
#> mtcars-8.csv
#> "/private/tmp/RtmpDxlsSX/Rinst130257392eda0/vroom/extdata/mtcars-8.csv"
Now we can efficiently read them into one table by passing the filenames directly to vroom.
vroom(files)
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 2 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 3 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> # ℹ 29 more rows
Often the filename or directory where the files are stored contains
information. The id
parameter can be used to add an extra
column to the result with the full path to each file. (in this case we
name the column path
).
vroom(files, id = "path")
#> Rows: 32 Columns: 13
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 13
#> path model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 /priv… Dats… 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 2 /priv… Merc… 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 3 /priv… Merc… 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> # ℹ 29 more rows
vroom supports reading zip, gz, bz2 and xz compressed files automatically, just pass the filename of the compressed file to vroom.
file <- vroom_example("mtcars.csv.gz")
vroom(file)
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
vroom()
decompresses, indexes and writes the
decompressed data to a file in the temp directory in a single stream.
The temporary file is used to lazily look up the values and will be
automatically cleaned up when all values in the object have been fully
read, the object is removed, or the R session ends.
If you are reading a zip file that contains multiple files with the same format, you can read a subset of the files at once like so:
zip_file <- vroom_example("mtcars-multi-cyl.zip")
filenames <- unzip(zip_file, list = TRUE)$Name
filenames
#> [1] "mtcars-4.csv" "mtcars-6.csv" "mtcars-8.csv"
# imagine we only want to read 2 of the 3 files
vroom(purrr::map(filenames[c(1, 3)], ~ unz(zip_file, .x)))
#> Rows: 25 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 25 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 2 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 3 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> # ℹ 22 more rows
vroom can read files directly from the internet as well by passing the URL of the file to vroom.
file <- "https://raw.githubusercontent.com/tidyverse/vroom/main/inst/extdata/mtcars.csv"
vroom(file)
It can even read gzipped files from the internet (although not the other compressed formats).
vroom provides the same interface for column selection and renaming as dplyr::select(). This provides very efficient, flexible and readable selections. For example you can select by:
file <- vroom_example("mtcars.csv.gz")
vroom(file, col_select = c(model, cyl, gear))
#> Rows: 32 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (2): cyl, gear
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 3
#> model cyl gear
#> <chr> <dbl> <dbl>
#> 1 Mazda RX4 6 4
#> 2 Mazda RX4 Wag 6 4
#> 3 Datsun 710 4 4
#> # ℹ 29 more rows
c(1, 2, 5)
vroom(file, col_select = c(1, 3, 11))
#> Rows: 32 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (2): cyl, gear
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 3
#> model cyl gear
#> <chr> <dbl> <dbl>
#> 1 Mazda RX4 6 4
#> 2 Mazda RX4 Wag 6 4
#> 3 Datsun 710 4 4
#> # ℹ 29 more rows
starts_with()
and
ends_with()
vroom(file, col_select = starts_with("d"))
#> Rows: 32 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> dbl (2): disp, drat
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 2
#> disp drat
#> <dbl> <dbl>
#> 1 160 3.9
#> 2 160 3.9
#> 3 108 3.85
#> # ℹ 29 more rows
vroom(file, col_select = c(car = model, everything()))
#> Rows: 32 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): model
#> dbl (11): mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 32 × 12
#> car mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
A fixed width file can be a very compact representation of numeric
data. Unfortunately, it’s also often painful to read because you need to
describe the length of every field. vroom aims to make it as easy as
possible by providing a number of different ways to describe the field
structure. Use vroom_fwf()
in conjunction with one of the
following helper functions to read the file.
fwf_sample <- vroom_example("fwf-sample.txt")
cat(readLines(fwf_sample))
#> John Smith WA 418-Y11-4111 Mary Hartford CA 319-Z19-4341 Evan Nolan IL 219-532-c301
fwf_empty()
- Guess based on the position of empty
columns.vroom_fwf(fwf_sample, fwf_empty(fwf_sample, col_names = c("first", "last", "state", "ssn")))
#> Rows: 3 Columns: 4
#> ── Column specification ────────────────────────────────────────────────────────
#>
#> chr (4): first, last, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 4
#> first last state ssn
#> <chr> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301
fwf_widths()
- Use user provided set of field
widths.vroom_fwf(fwf_sample, fwf_widths(c(20, 10, 12), c("name", "state", "ssn")))
#> Rows: 3 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#>
#> chr (3): name, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 3
#> name state ssn
#> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301
fwf_positions()
- Use user provided sets of start and
end positions.vroom_fwf(fwf_sample, fwf_positions(c(1, 30), c(20, 42), c("name", "ssn")))
#> Rows: 3 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#>
#> chr (2): name, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 2
#> name ssn
#> <chr> <chr>
#> 1 John Smith 418-Y11-4111
#> 2 Mary Hartford 319-Z19-4341
#> 3 Evan Nolan 219-532-c301
fwf_cols()
- Use user provided named widths.vroom_fwf(fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))
#> Rows: 3 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#>
#> chr (3): name, state, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 3
#> name state ssn
#> <chr> <chr> <chr>
#> 1 John Smith WA 418-Y11-4111
#> 2 Mary Hartford CA 319-Z19-4341
#> 3 Evan Nolan IL 219-532-c301
fwf_cols()
- Use user provided named pairs of
positions.vroom_fwf(fwf_sample, fwf_cols(name = c(1, 20), ssn = c(30, 42)))
#> Rows: 3 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#>
#> chr (2): name, ssn
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 3 × 2
#> name ssn
#> <chr> <chr>
#> 1 John Smith 418-Y11-4111
#> 2 Mary Hartford 319-Z19-4341
#> 3 Evan Nolan 219-532-c301
vroom guesses the data types of columns as they are read, however sometimes the guessing fails and it is necessary to explicitly set the type of one or more columns.
The available specifications are: (with single letter abbreviations in quotes)
col_logical()
‘l’, containing only T
,
F
, TRUE
, FALSE
, 1
or
0
.col_integer()
‘i’, integer values.col_big_integer()
‘I’, Big integer values. (64bit
integers)col_double()
‘d’, floating point values.col_number()
‘n’, numbers containing the
grouping_mark
col_date(format = "")
‘D’: with the locale’s
date_format
.col_time(format = "")
‘t’: with the locale’s
time_format
.col_datetime(format = "")
‘T’: ISO8601 date times.col_factor(levels, ordered)
‘f’, a fixed set of
values.col_character()
‘c’, everything else.col_skip()
’_, -’, don’t import this column.col_guess()
‘?’, parse using the “best” type based on
the input.You can tell vroom what columns to use with the
col_types()
argument in a number of ways.
If you only need to override a single column the most concise way is to use a named vector.
# read the 'hp' columns as an integer
vroom(vroom_example("mtcars.csv"), col_types = c(hp = "i"))
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
# also skip reading the 'cyl' column
vroom(vroom_example("mtcars.csv"), col_types = c(hp = "i", cyl = "_"))
#> # A tibble: 32 × 11
#> model mpg disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 Wag 21 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
# also read the gears as a factor
vroom(vroom_example("mtcars.csv"), col_types = c(hp = "i", cyl = "_", gear = "f"))
#> # A tibble: 32 × 11
#> model mpg disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
#> 1 Mazda RX4 21 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 Wag 21 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
You can read all the columns with the same type, by using the
.default
argument. For example reading everything as a
character.
vroom(vroom_example("mtcars.csv"), col_types = c(.default = "c"))
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.875 17.02 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
#> # ℹ 29 more rows
However you can also use the col_*()
functions in a
list.
vroom(
vroom_example("mtcars.csv"),
col_types = list(hp = col_integer(), cyl = col_skip(), gear = col_factor())
)
#> # A tibble: 32 × 11
#> model mpg disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
#> 1 Mazda RX4 21 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 Wag 21 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
This is most useful when a column type needs additional information, such as for categorical data when you know all of the levels of a factor.
vroom(
vroom_example("mtcars.csv"),
col_types = list(gear = col_factor(levels = c(gear = c("3", "4", "5"))))
)
#> # A tibble: 32 × 12
#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 W… 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> # ℹ 29 more rows
Often the names of columns in the original dataset are not ideal to
work with. vroom()
uses the same .name_repair
argument as tibble, so you can use one of the default name repair
strategies or provide a custom function. A great approach is to use the
janitor::make_clean_names()
function as the input. This will automatically clean the names to use
whatever case you specify, here I am setting it to use
ALLCAPS
names.
Use vroom_write()
to write delimited files, the default
delimiter is tab, to write TSV files. Writing to TSV by default has the
following benefits: - Avoids the issue of whether to use ;
(common in Europe) or ,
(common in the US) - Unlikely to
require quoting in fields, as very few fields contain tabs - More easily
and efficiently ingested by Unix command line tools such as
cut
, perl
and awk
.
However you can also use delim = ','
to write CSV files,
which are common as inputs to GUI spreadsheet tools like Excel or Google
Sheets.
For gzip, bzip2 and xz compression the outputs will be automatically
compressed if the filename ends in .gz
, .bz2
or .xz
.
vroom_write(mtcars, "mtcars.tsv.gz")
vroom_write(mtcars, "mtcars.tsv.bz2")
vroom_write(mtcars, "mtcars.tsv.xz")
It is also possible to use other compressors by using
pipe()
with vroom_write()
to create a pipe
connection to command line utilities, such as
The parallel compression versions can be considerably faster for
large output files and generally vroom_write()
is fast
enough that the compression speed becomes the bottleneck when
writing.
vroom supports reading and writing to the C-level stdin
and stdout
of the R process by using stdin()
and stdout()
. E.g. from a shell prompt you can pipe to and
from vroom directly.
cat inst/extdata/mtcars.csv | Rscript -e 'vroom::vroom(stdin())'
Rscript -e 'vroom::vroom_write(iris, stdout())' | head
Note this interpretation of stdin()
and
stdout()
differs from that used elsewhere by R, however we
believe it better matches most user’s expectations for this use
case.
vignette("benchmarks")
discusses the performance of
vroom, how it compares to alternatives and how it achieves its
results.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.