The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Visualize Probability Distributions
Version: 0.2.0
Description: Visualize and compute percentiles/probabilities of normal, t, f, chi square and binomial distributions.
Depends: R(≥ 3.2)
Imports: ggplot2, magrittr, stats, utils
Suggests: covr, knitr, rmarkdown, testthat, vdiffr, xplorerr
License: MIT + file LICENSE
URL: https://github.com/rsquaredacademy/vistributions, https://vistributions.rsquaredacademy.com
BugReports: https://github.com/rsquaredacademy/vistributions/issues
Encoding: UTF-8
RoxygenNote: 7.3.2
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2024-11-07 09:55:08 UTC; HP
Author: Aravind Hebbali [aut, cre]
Maintainer: Aravind Hebbali <hebbali.aravind@gmail.com>
Repository: CRAN
Date/Publication: 2024-11-07 11:10:04 UTC

vistributions package

Description

Visualize probability distributions.

Author(s)

Maintainer: Aravind Hebbali hebbali.aravind@gmail.com

See Also

Useful links:


Visualize binomial distribution

Description

Visualize how changes in number of trials and the probability of success affect the shape of the binomial distribution. Compute & visualize probability from a given quantile and quantiles out of given probability.

Usage

vdist_binom_plot(n = 10, p = 0.3, print_plot = TRUE)

vdist_binom_prob(
  n = 10,
  p = 0.3,
  s = 4,
  type = c("lower", "upper", "exact", "interval"),
  print_plot = TRUE
)

vdist_binom_perc(
  n = 10,
  p = 0.5,
  tp = 0.05,
  type = c("lower", "upper"),
  print_plot = TRUE
)

Arguments

n

Number of trials.

p

Aggregate probability.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

s

Number of success.

type

Lower/upper/exact/interval.

tp

Probability of success in a trial.

See Also

Binomial

Examples

# visualize binomial distribution
vdist_binom_plot(10, 0.3)

# visualize probability from a given quantile
vdist_binom_prob(10, 0.3, 4, type = 'exact')
vdist_binom_prob(10, 0.3, 4, type = 'lower')
vdist_binom_prob(10, 0.3, 4, type = 'upper')
vdist_binom_prob(10, 0.3, c(4, 6), type = 'interval')


# visualize quantiles out of given probability
vdist_binom_perc(10, 0.5, 0.05)
vdist_binom_perc(10, 0.5, 0.05, "upper")


Visualize chi square distribution

Description

Visualize how changes in degrees of freedom affect the shape of the chi square distribution. Compute & visualize quantiles out of given probability and probability from a given quantile.

Usage

vdist_chisquare_plot(
  df = 3,
  normal = FALSE,
  xaxis_range = 25,
  print_plot = TRUE
)

vdist_chisquare_perc(
  probs = 0.95,
  df = 3,
  type = c("lower", "upper"),
  print_plot = TRUE
)

vdist_chisquare_prob(
  perc = 13,
  df = 11,
  type = c("lower", "upper"),
  print_plot = TRUE
)

Arguments

df

Degrees of freedom.

normal

If TRUE, normal curve with same mean and sd as the chi square distribution is drawn.

xaxis_range

The upper range of the X axis.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

probs

Probability value.

type

Lower tail or upper tail.

perc

Quantile value.

See Also

Chisquare

Examples

# visualize chi square distribution
vdist_chisquare_plot()
vdist_chisquare_plot(df = 5)
vdist_chisquare_plot(df = 5, normal = TRUE)

# visualize quantiles out of given probability
vdist_chisquare_perc(0.165, 8, 'lower')
vdist_chisquare_perc(0.22, 13, 'upper')

# visualize probability from a given quantile.
vdist_chisquare_prob(13.58, 11, 'lower')
vdist_chisquare_prob(15.72, 13, 'upper')


Visualize f distribution

Description

Visualize how changes in degrees of freedom affect the shape of the F distribution. Compute & visualize quantiles out of given probability and probability from a given quantile.

Usage

vdist_f_plot(num_df = 4, den_df = 30, normal = FALSE, print_plot = TRUE)

vdist_f_perc(
  probs = 0.95,
  num_df = 3,
  den_df = 30,
  type = c("lower", "upper"),
  print_plot = TRUE
)

vdist_f_prob(
  perc = 2.35,
  num_df = 5,
  den_df = 32,
  type = c("lower", "upper"),
  print_plot = TRUE
)

Arguments

num_df

Degrees of freedom associated with the numerator of f statistic.

den_df

Degrees of freedom associated with the denominator of f statistic.

normal

If TRUE, normal curve with same mean and sd as the F distribution is drawn.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

probs

Probability value.

type

Lower tail or upper tail.

perc

Quantile value.

See Also

FDist

Examples

# visualize F distribution
vdist_f_plot()
vdist_f_plot(6, 10, normal = TRUE)

# visualize probability from a given quantile
vdist_f_perc(0.95, 3, 30, 'lower')
vdist_f_perc(0.125, 9, 35, 'upper')

# visualize quantiles out of given probability
vdist_f_prob(2.35, 5, 32)
vdist_f_prob(1.5222, 9, 35, type = "upper")


Launch shiny app

Description

Launches shiny app for visualizing distributions.

Usage

vdist_launch_app()

Examples

## Not run: 
vdist_launch_app ()

## End(Not run)

Visualize normal distribution

Description

Visualize how changes in mean and standard deviation affect the shape of the normal distribution. Compute & visualize quantiles out of given probability and probability from a given quantile.

Usage

vdist_normal_plot(mean = 0, sd = 1, print_plot = TRUE)

vdist_normal_perc(
  probs = 0.95,
  mean = 0,
  sd = 1,
  type = c("lower", "upper", "both"),
  print_plot = TRUE
)

vdist_normal_prob(
  perc = 3,
  mean = 0,
  sd = 1,
  type = c("lower", "upper", "both"),
  print_plot = TRUE
)

Arguments

mean

Mean of the normal distribution.

sd

Standard deviation of the normal distribution.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

probs

Probability value.

type

Lower tail, upper tail or both.

perc

Quantile value.

See Also

Normal

Examples

# visualize normal distribution
vdist_normal_plot()
vdist_normal_plot(mean = 2, sd = 0.6)

# visualize quantiles out of given probability
vdist_normal_perc(0.95, mean = 2, sd = 1.36)
vdist_normal_perc(0.3, mean = 2, sd = 1.36, type = 'upper')
vdist_normal_perc(0.95, mean = 2, sd = 1.36, type = 'both')

# visualize probability from a given quantile
vdist_normal_prob(3.78, mean = 2, sd = 1.36)
vdist_normal_prob(3.43, mean = 2, sd = 1.36, type = 'upper')
vdist_normal_prob(c(-1.74, 1.83), type = 'both')


Visualize t distribution

Description

Visualize how degrees of freedom affect the shape of t distribution, visualize quantiles out of given probability and probability from a given quantile.

Usage

vdist_t_plot(df = 3, print_plot = TRUE)

vdist_t_perc(
  probs = 0.95,
  df = 4,
  type = c("lower", "upper", "both"),
  print_plot = TRUE
)

vdist_t_prob(
  perc = 1.6,
  df = 7,
  type = c("lower", "upper", "interval", "both"),
  print_plot = TRUE
)

Arguments

df

Degrees of freedom.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

probs

Probability value.

type

Lower tail, upper tail, interval or both.

perc

Quantile value.

See Also

TDist

Examples

# visualize t distribution
vdist_t_plot()
vdist_t_plot(6)
vdist_t_plot(df = 8)

# visualize quantiles out of given probability
vdist_t_perc(probs = 0.95, df = 4, type = 'lower')
vdist_t_perc(probs = 0.35, df = 4, type = 'upper')
vdist_t_perc(probs = 0.69, df = 7, type = 'both')

# visualize probability from a given quantile
vdist_t_prob(2.045, 7, 'lower')
vdist_t_prob(0.945, 7, 'upper')
vdist_t_prob(1.445, 7, 'interval')
vdist_t_prob(1.6, 7, 'both')

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.