The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Plot one-dimensional data using quasirandom noise and kernel density

CRAN_Status_Badge

Introduction

vipor (VIolin POints in R) provides a way to plot one-dimensional data (perhaps divided into several categories) by spreading the data points to fill the kernel density. It uses a van der Corput sequence to space the dots and avoid generating distracting patterns in the data. See the examples below.

Violin scatter plots (aka column scatter plots or beeswarm plots or one dimensional scatter plots) are a way of plotting points that would ordinarily overlap so that they fall next to each other instead. In addition to reducing overplotting, it helps visualize the density of the data at each point (similar to a violin plot), while still showing each data point individually.

Installation

This package is on CRAN so install should be a simple:

install.packages('vipor')

If you want the development version from GitHub, you can do:

devtools::install_github("sherrillmix/vipor")

Examples

Violin point examples

We use the provided function offsetX to generate the x-offsets for plotting.

library(vipor)
# Generate data
set.seed(12345)
dat <- list(rnorm(50), rnorm(500), c(rnorm(100), rnorm(100,5)), rcauchy(100))
names(dat) <- c("Normal", "Dense Normal", "Bimodal", "Extremes")

# Violin points of several distributions
par(mfrow=c(4,1), mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0),
    cex.axis=1.2,cex.lab=1.2,cex.main=1.2)
sapply(names(dat),function(label) {
    y<-dat[[label]]
    offsets <- list(
        'Default'=offsetX(y),  # Default
        'Adjust=2'=offsetX(y, adjust=2),    # More smoothing
        'Adjust=.1'=offsetX(y, adjust=0.1),  # Tighter fit
        'Width=10%'=offsetX(y, width=0.1)    # Less wide
    )  
    ids <- rep(1:length(offsets), each=length(y))
    plot(unlist(offsets) + ids, rep(y, length(offsets)), ylab='y value',
        xlab='', xaxt='n', pch=21,col='#00000099',bg='#00000033',las=1,main=label)
    axis(1, 1:length(offsets), names(offsets))
})
plot of chunk adjust-examples
plot of chunk adjust-examples

Comparison with other methods

library(beeswarm)
par(mfrow=c(4,1), mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0),
    cex.axis=1.2,cex.lab=1.2,cex.main=1.2)
sapply(names(dat),function(label) {
    y<-dat[[label]]
    #need to start plot first for beeswarm so xlim is magic number here
    plot(1,1,type='n',ylab='y value',xlim=c(.5,8+.5),
        ylim=range(y),xlab='', xaxt='n', ,las=1,main=label)
    offsets <- list(
        'Quasi'=offsetX(y),  # Default
        'Pseudo'=offsetX(y, method='pseudorandom',nbins=100),
        'Frown'=offsetX(y, method='frowney',nbins=20),
        'Smile\n20 bin'=offsetX(y, method='smiley',nbins=20),
        'Smile\n100 bin'=offsetX(y, method='smiley',nbins=100),
        'Smile\nn/5 bin'=offsetX(y, method='smiley',nbins=round(length(y)/5)),
        'Tukey'=offsetX(y, method='tukey'),
        'Beeswarm'=swarmx(rep(0,length(y)),y)$x
    )
    ids <- rep(1:length(offsets), each=length(y))

    points(unlist(offsets) + ids, rep(y, length(offsets)),pch=21,col='#00000099',bg='#00000033')
    par(lheight=.8)
    axis(1, 1:length(offsets), names(offsets),padj=1,mgp=c(0,-.3,0),tcl=-.5)
})
plot of chunk other-methods
plot of chunk other-methods

And using the county data from Tukey and Tukey:

par(mar=c(2.5,3.1, 1.2, 0.5),mgp=c(2.1,.75,0))
y<-log10(counties$landArea)
offsets <- list(
  'Quasi'=offsetX(y),  # Default
  'Quasi\nadjust=.25'=offsetX(y,adjust=.25),
  'Pseudo'=offsetX(y, method='pseudorandom',nbins=100),
  'Smile'=offsetX(y, method='smiley'),
  'Smile\nadjust=.25'=offsetX(y, method='smiley',adjust=.25),
  'Tukey'=offsetX(y, method='tukey')
)
ids <- rep(1:length(offsets), each=length(y))
plot(
  unlist(offsets) + ids,
  rep(y, length(offsets)),
  xlab='', ylab='Land area (log10)',
  main='Counties', xaxt='n', las=1,
  pch='.'
)
par(lheight=.8)
axis(1, 1:length(offsets), names(offsets),padj=1,mgp=c(0,-.3,0),tcl=-.5)
plot of chunk methods-county
plot of chunk methods-county

Authors: Scott Sherrill-Mix and Erik Clarke

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.