The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Build Status | CRAN | License |
---|---|---|
R package for generating violin plots with optional mean comparison with nonparametric Mann-Whitney test (default) or parametric Tukey’s honest significant difference as well as simple linear regression. This package aims to be a simple and quick visualisation tool for comparing means and assessing trends of categorical variables.
violinplotter(formula, data=NULL, TITLE="", XLAB="", YLAB="", VIOLIN_COLOURS=c("#e0f3db", "#ccebc5", "#a8ddb5", "#7bccc4", "#4eb3d3", "#2b8cbe"), PLOT_BARS=TRUE, ERROR_BAR_COLOURS=c("#636363", "#1c9099", "#de2d26"), SHOW_SAMPLE_SIZE=FALSE, SHOW_MEANS=TRUE, CATEGORICAL=TRUE, LOGX=FALSE, LOGX_BASE=10, MANN_WHITNEY=TRUE, HSD=FALSE, ALPHA=0.05, REGRESS=FALSE)
### for more information ?violinplotter
install.packages("violinplotter")
For the development version, please download from github via:
### install the "remotes" package to install R packages from github repositories
install.packages("remotes")
### install "violinplotter" (this command also performs package update)
::install_github("jeffersonfparil/violinplotter") remotes
Simulated dataset:
library(violinplotter)
= rep(rep(rep(c(1:5), each=5), times=5), times=5)
x1 = rep(rep(letters[6:10], each=5*5), times=5)
x2 = rep(letters[11:15], each=5*5*5)
x3 = rep(1:5, each=5*5*5) + rnorm(rep(1:5, each=5), length(x1)) ### x3 is the variable affecting y (see each=5*5*5)
y = data.frame(x1, x2, x3, y)
data = violinplotter(formula=y ~ x1 + x2 + x3 + (x2:x3), data=data, ALPHA=0.05)
OUT_1 = violinplotter(formula=y ~ x1 + x2 + x3 + (x2:x3), data=data, ALPHA=0.001)
OUT_2 = violinplotter(formula=y ~ x1 + x2 + x3 + (x2:x3), data=data, CATEGORICAL=c(F,T,T,T), LOGX=c(T,F,F,F), LOGX_BASE=c(2,1,1,1), REGRESS=c(T,F,F,F))
OUT_3 = violinplotter(formula=y ~ x1 + x2 + x3 + (x2:x3), data=data, MANN_WHITNEY=FALSE, HSD=TRUE, ALPHA=0.05)
OUT_4 if (sum(grepl("RColorBrewer", installed.packages()[,1]))!=0){
= violinplotter(formula=y ~ x1 + x2 + x3 + (x2:x3), data=data, VIOLIN_COLOURS=list(RColorBrewer::brewer.pal(9, "Set1"), RColorBrewer::brewer.pal(9, "Spectral"), RColorBrewer::brewer.pal(9, "GnBu")))
OUT_4 }
Dummy dataset:
library(violinplotter)
str(dummy_data)
= violinplotter(formula = RESPONSE_1 ~ STRATUM*TREATMENT, data=dummy_data, CATEGORICAL=c(FALSE,TRUE,TRUE), REGRESS=c(TRUE, FALSE, FALSE), HSD=c(TRUE, TRUE, FALSE))
OUT_1 = violinplotter(formula = RESPONSE_2 ~ STRATUM*TREATMENT, data=dummy_data)
OUT_2 = supressMessages(violinplotter(formula = RESPONSE_2 ~ STRATUM + TREATMENT, data=dummy_data)) OUT_3
Sample output figure:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.