The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
plot_marginal_effects <- function(covs, preds) {
cbind(covs, preds) %>%
tidyr::gather(alpha, prediction, -seq_len(NCOL(covs))) %>%
dplyr::mutate(prediction = as.numeric(prediction)) %>%
tidyr::gather(variable, value, -(alpha:prediction)) %>%
dplyr::mutate(value = as.numeric(value)) %>%
ggplot(aes(value, prediction, color = alpha)) +
geom_point(alpha = 0.15) +
geom_smooth(span = 0.5, se = FALSE) +
facet_wrap(~ variable, scale = "free_x") +
theme(legend.position = "none") +
theme(plot.margin = unit(c(0, 0, 0, 0), "mm")) +
xlab("")
}
## instant dteday season yr mnth holiday weekday workingday weathersit
## 1 1 2011-01-01 1 0 1 0 6 0 2
## 2 2 2011-01-02 1 0 1 0 0 0 2
## 3 3 2011-01-03 1 0 1 0 1 1 1
## 4 4 2011-01-04 1 0 1 0 2 1 1
## 5 5 2011-01-05 1 0 1 0 3 1 1
## 6 6 2011-01-06 1 0 1 0 4 1 1
## temp atemp hum windspeed casual registered cnt
## 1 0.344167 0.363625 0.805833 0.1604460 331 654 985
## 2 0.363478 0.353739 0.696087 0.2485390 131 670 801
## 3 0.196364 0.189405 0.437273 0.2483090 120 1229 1349
## 4 0.200000 0.212122 0.590435 0.1602960 108 1454 1562
## 5 0.226957 0.229270 0.436957 0.1869000 82 1518 1600
## 6 0.204348 0.233209 0.518261 0.0895652 88 1518 1606
See variable description on UCI web page.
ggplot(bikedata, aes(dteday, count)) +
geom_line() +
scale_x_date(labels = scales::date_format("%b %y")) +
xlab("date") +
ylab("rental count") +
stat_smooth(method = "lm", se = FALSE, linetype = "dashed") +
theme(plot.title = element_text(lineheight = 0.8, size = 20)) +
theme(text = element_text(size = 18))
lm_trend <- lm(count ~ instant, data = bikedata)
trend <- predict(lm_trend)
bikedata <- mutate(bikedata, count = count / trend)
ggplot(bikedata, aes(dteday, count)) +
geom_line() +
scale_x_date(labels = scales::date_format("%b %y")) +
xlab("date") +
ylab("detrended rental count") +
theme(plot.title = element_text(lineheight = 0.8, size = 20)) +
theme(text = element_text(size = 18))
## D-vine regression model: count | temperature, humidity, windspeed, month, weekday, weathersituation, season, workingday
## nobs = 731, edf = 86.65, cll = 454.27, caic = -735.24, cbic = -337.15
## var edf cll caic cbic p_value
## 1 count 9.59683 -198.076002 415.34567 459.437472 NA
## 2 temperature 21.96426 415.804858 -787.68119 -686.768281 1.069922e-161
## 3 humidity 17.92291 118.872952 -201.90008 -119.554825 2.264225e-40
## 4 windspeed 1.00000 22.818774 -43.63755 -39.043134 1.422877e-11
## 5 month 16.20780 28.210770 -24.00595 50.459366 2.387608e-06
## 6 weekday 16.95399 28.345410 -22.78285 55.110771 3.547405e-06
## 7 weathersituation 1.00000 13.781871 -25.56374 -20.969329 1.520015e-07
## 8 season 1.00000 16.481766 -30.96353 -26.369118 9.390388e-09
## 9 workingday 1.00000 8.025056 -14.05011 -9.455699 6.168797e-05
month_labs <- c("Jan","", "Mar", "", "May", "", "Jul", "", "Sep", "", "Nov", "")
plot_marginal_effects(covs = select(bikedata, month), preds = pred) +
scale_x_discrete(limits = 1:12, labels = month_labs)
plot_marginal_effects(covs = select(bikedata, weathersituation),
preds = pred) +
scale_x_discrete(limits = 1:3,labels = c("good", "medium", "bad"))
weekday_labs <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
plot_marginal_effects(covs = select(bikedata, weekday), preds = pred) +
scale_x_discrete(limits = 1:7, labels = weekday_labs)
plot_marginal_effects(covs = select(bikedata, workingday), preds = pred) +
scale_x_discrete(limits = 0:1, labels = c("no", "yes")) +
geom_smooth(method = "lm", se = FALSE) +
xlim(c(0, 1))
season_labs <- c("spring", "summer", "fall", "winter")
plot_marginal_effects(covs = select(bikedata, season), preds = pred) +
scale_x_discrete(limits = 1:4, labels = season_labs)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.