The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
vimixr
packageLet’s generate some toy data. Here the data contains N = 100 samples, D = 2 dimensions and K = 2 clusters.
res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
fixed_variance = TRUE, covariance_type = "diagonal",
prior_precision_scalar_eta = 0.001,
post_precision_scalar_eta = matrix(0.001, 20, 1),
cov_data = diag(ncol(X)))
summary(res)
#> Length Class Mode
#> posterior 5 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type = "diagonal",fixed_variance = FALSE,
cluster_specific_covariance = TRUE,
variance_prior_type = "off-diagonal normal",
prior_shape_scalar_cov = 0.001,
prior_rate_scalar_cov = 0.001,
post_shape_scalar_cov = 0.001,
post_rate_scalar_cov = 0.001,
prior_precision_scalar_eta = 0.001,
post_precision_scalar_eta = matrix(0.001, 20, 1))
summary(res)
#> Length Class Mode
#> posterior 6 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type = "full",fixed_variance = TRUE,
cluster_specific_covariance = TRUE,
variance_prior_type = "off-diagonal normal",
post_cov_eta = array(rep(diag(ncol(X)), 20), c(ncol(X), ncol(X), 20)),
prior_cov_eta = 1000*diag(ncol(X)),
cov_data = diag(ncol(X)))
summary(res)
#> Length Class Mode
#> posterior 5 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res)#Full Variance IW distribution
res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type = "full",fixed_variance = FALSE,
cluster_specific_covariance = FALSE,
variance_prior_type = "IW",
prior_df_cov = ncol(X) + 2,
prior_scale_cov = diag(ncol(X))*100,
post_df_cov = ncol(X) + 2,
post_scale_cov = diag(ncol(X)),
post_cov_eta = array(rep(diag(ncol(X)), 20), c(ncol(X), ncol(X), 20)),
prior_cov_eta = 1000*diag(ncol(X)))
summary(res)
#> Length Class Mode
#> posterior 6 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type = "full",fixed_variance = FALSE,
cluster_specific_covariance = FALSE,
variance_prior_type = "decomposed",
prior_shape_diag_decomp = 0.001,
prior_rate_diag_decomp = 0.001,
prior_mean_offdiag_decomp = 0,
prior_var_offdiag_decomp = 1,
post_shape_diag_decomp = matrix(0.001, 1, ncol(X)),
post_rate_diag_decomp = matrix(0.001, 1, ncol(X)),
post_mean_offdiag_decomp = matrix(0, 1, 0.5*ncol(X)*(ncol(X)-1)),
post_var_offdiag_decomp = matrix(0.001, 1, 0.5*ncol(X)*(ncol(X)-1)),
post_cov_eta = array(rep(diag(ncol(X)), 20), c(ncol(X), ncol(X), 20)),
prior_cov_eta = 1000*diag(ncol(X)))
summary(res)
#> Length Class Mode
#> posterior 6 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type = "full",fixed_variance = FALSE,
cluster_specific_covariance = TRUE,
variance_prior_type = "IW",
prior_df_cs_cov = ncol(X) + 2,
prior_scale_cs_cov = diag(ncol(X)),
post_df_cs_cov = matrix(rep(ncol(X) + 2, 20), nrow = 1),
post_scale_cs_cov = array(rep(diag(ncol(X)), 20), c(ncol(X), ncol(X), 20)),
scaling_cov_eta = nrow(X))
summary(res)
#> Length Class Mode
#> posterior 6 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type="full",fixed_variance=FALSE,
cluster_specific_covariance = TRUE,
variance_prior_type = "sparse",
prior_shape_d_cs_cov = matrix(rep(100, 20), nrow = 1, ncol = 20),
prior_rate_d_cs_cov = matrix(rep(100, 20*ncol(X)), 20, ncol(X)),
prior_var_offd_cs_cov = 1000,
post_shape_d_cs_cov = matrix(0.001, 1, 20),
post_rate_d_cs_cov = matrix(0.001, 20, ncol(X)),
post_var_offd_cs_cov = array(0.001, c(ncol(X), ncol(X), 20)),
scaling_cov_eta = nrow(X))
summary(res)
#> Length Class Mode
#> posterior 8 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res) res <- cvi_npmm(X, variational_params = 20, prior_shape_alpha = 0.001,
prior_rate_alpha = 0.001, post_shape_alpha = 0.001,
post_rate_alpha = 0.001, prior_mean_eta = matrix(0, 1, ncol(X)),
post_mean_eta = matrix(0.001, 20, ncol(X)),
log_prob_matrix = t(apply(matrix(0.001, nrow(X), 20), 1,
function(x){x/sum(x)})), maxit = 1000,
covariance_type="full",fixed_variance=FALSE,
cluster_specific_covariance = TRUE,
variance_prior_type = "off-diagonal normal",
prior_shape_d_cs_cov = matrix(rep(100, 20), nrow = 1, ncol = 20),
prior_rate_d_cs_cov = 100,
prior_var_offd_cs_cov = 0.0001,
post_shape_d_cs_cov = matrix(0.001, 1, 20),
post_rate_d_cs_cov = matrix(0.001, 20, ncol(X)),
post_mean_offd_cs_cov = array(rep(diag(ncol(X)), 20), c(ncol(X), ncol(X), 20)),
scaling_cov_eta = nrow(X))
summary(res)
#> Length Class Mode
#> posterior 6 -none- list
#> optimisation 3 -none- list
#> PCA_viz 1 ggplot2::ggplot S4
#> ELBO_viz 1 ggplot2::ggplot S4
#> Seed_used 1 -none- character
plot(res)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.