The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Miscellaneous Functions for Vasicek Distribution
Version: 0.0.3
Description: Provide a collection of miscellaneous R functions related to the Vasicek distribution with the intent to make the lives of risk modelers easier.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/statcompute/vasicek
Author: WenSui Liu
Maintainer: WenSui Liu <liuwensui@gmail.com>
Depends: R (≥ 3.6.0)
Imports: stats, mvtnorm
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
NeedsCompilation: no
Packaged: 2020-11-08 20:38:59 UTC; liuwensui
Repository: CRAN
Date/Publication: 2020-11-08 20:50:02 UTC

Kolmogorov-Smirnov goodness-of-fit test for the Vasicek distribution

Description

The function gof_ks performs Kolmogorov-Smirnov goodness-of-fit test for the Vasicek distribution

Usage

gof_ks(x, Rho, P)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Rho

The Rho parameter in the Vasicek distribution

P

The P parameter in the Vasicek distribution

Value

A list with statistical test result, including ks stat and p-value.

Examples

x <- vsk_rvs(100, Rho = 0.2, P = 0.1)
gof_ks(x, Rho = 0.2, P = 0.1)

Estimating Vasicek Rho parameter by assuming the know P parameter

Description

The function vsk_Rho estimates Rho parameter in the Vasicek distribution by using maximum likelihood estimator, assuming the known P parameter.

Usage

vsk_Rho(x, p)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

p

A numeric vector in the (0, 1) interval. p has the same length as x. Each value of p can be a constant or varying.

Value

A scalar representing the Rho parameter in the Vasicek distribution.

Examples

x <- vsk_rvs(1000, Rho = 0.2, P = 0.1)
p <- rep(mean(x), length(x))
vsk_Rho(x, p)
# 0.2110976

Calculating the cumulative distribution function of Vasicek

Description

The function vsk_cdf calculates the cumulative distribution function of Vasicek.

Usage

vsk_cdf(x, Rho, P)

Arguments

x

A numeric vector in the [0, 1] interval that is supposed to follow the Vasicek distribution

Rho

The Rho parameter in the Vasicek distribution

P

The P parameter in the Vasicek distribution

Value

A numeric vector with the corresponding cdf.

Examples

vsk_cdf(c(0.278837772815679, 0.5217229060260343), Rho = 0.2, P = 0.3)
# [1] 0.5 0.9

Estimating Vasicek parameters by using direct moment matching

Description

The function vsk_mle estimates parameters in the Vasicek distribution by using direct moment matching.

Usage

vsk_dmm(x)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Value

A list with Vasicek parameters, namely Rho and P.

Examples

vsk_dmm(vsk_rvs(1000, Rho = 0.2, P = 0.1))
# $Rho
# [1] 0.2135844
# $P
# [1] 0.1025469

Estimating Vasicek parameters by using indirect moment matching

Description

The function vsk_imm estimates parameters in the Vasicek distribution by using indirect moment matching.

Usage

vsk_imm(x)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Value

A list with Vasicek parameters, namely Rho and P.

Examples

vsk_imm(vsk_rvs(1000, Rho = 0.2, P = 0.1))
# $Rho
# [1] 0.2110422
# $P
# [1] 0.1024877

Estimating Vasicek parameters by using maximum likelihood estimator

Description

The function vsk_mle estimates parameters in the Vasicek distribution by using maximum likelihood estimator.

Usage

vsk_mle(x)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Value

A list with Vasicek parameters, namely Rho and P.

Examples

vsk_mle(vsk_rvs(1000, Rho = 0.2, P = 0.1))
# $Rho
# [1] 0.2110976
# $P
# [1] 0.1025469

Calculating the probability density function of Vasicek

Description

The function vsk_pdf calculates the probability density function of Vasicek.

Usage

vsk_pdf(x, Rho, P)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Rho

The Rho parameter in the Vasicek distribution

P

The P parameter in the Vasicek distribution

Value

A numeric vector with the corresponding pdf.

Examples

vsk_pdf(c(0.01, 0.02), Rho = 0.2, P = 0.3)
# [1] 0.07019659 0.22207564

Calculating the percentile point function of Vasicek

Description

The function vsk_ppf calculates the percentile point function of Vasicek.

Usage

vsk_ppf(Alpha, Rho, P)

Arguments

Alpha

A numeric vector of probabilities

Rho

The Rho parameter in the Vasicek distribution

P

The P parameter in the Vasicek distribution

Value

A numeric vector with the corresponding ppf.

Examples

vsk_ppf(c(0.5, 0.9), Rho = 0.2, P = 0.3)
# [1] 0.2788378 0.5217229

Estimating Vasicek parameters by using quantile-based estimator

Description

The function vsk_qbe estimates parameters in the Vasicek distribution by using quantile-based estimator. It is not recommended for small sample size.

Usage

vsk_qbe(x)

Arguments

x

A numeric vector in the (0, 1) interval that is supposed to follow the Vasicek distribution

Value

A list with Vasicek parameters, namely Rho and P.

Examples

vsk_qbe(vsk_rvs(1000, Rho = 0.2, P = 0.1))
# $Rho
# [1] 0.1941091
# $P
# [1] 0.1019701

Generating random numbers for the Vasicek distribution

Description

The function vsk_rvs generates random numbers for the Vasicek distribution.

Usage

vsk_rvs(n, Rho, P, seed = 1)

Arguments

n

An integer for the number of observations.

Rho

The Rho parameter in the Vasicek distribution. It is in the range of (0, 1).

P

The P parameter in the Vasicek distribution. It is in the range of (0, 1).

seed

An integer that is used as the seed value to generate random numbers.

Value

A list of random number that follows the Vasicek distribution.

Examples

vsk_rvs(10, Rho = 0.2, P = 0.1)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.