The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The utiml package is a framework to support multi-label processing, like Mulan on Weka.
The main methods available on this package are organized in the groups: - Classification methods - Evaluation methods - Pre-process utilities - Sampling methods - Threshold methods
The installation process is similar to other packages available on CRAN:
install.packages("utiml")
This will also install mldr. To run the examples in this document, you also need to install the packages:
# Base classifiers (SVM and Random Forest)
install.packages(c("e1071", "randomForest"))
::install_github("rivolli/utiml") devtools
library(utiml)
# Create two partitions (train and test) of toyml multi-label dataset
ds <- create_holdout_partition(toyml, c(train=0.65, test=0.35))
# Create a Binary Relevance Model using e1071::svm method
brmodel <- br(ds$train, "SVM", seed=123)
# Predict
prediction <- predict(brmodel, ds$test)
# Show the predictions
head(as.bipartition(prediction))
head(as.ranking(prediction))
# Apply a threshold
newpred <- rcut_threshold(prediction, 2)
# Evaluate the models
result <- multilabel_evaluate(ds$tes, prediction, "bipartition")
thresres <- multilabel_evaluate(ds$tes, newpred, "bipartition")
# Print the result
print(round(cbind(Default=result, RCUT=thresres), 3))
library(utiml)
# Create three partitions (train, val, test) of emotions dataset
partitions <- c(train = 0.6, val = 0.2, test = 0.2)
ds <- create_holdout_partition(emotions, partitions, method="iterative")
# Create an Ensemble of Classifier Chains using Random Forest (randomForest package)
eccmodel <- ecc(ds$train, "RF", m=3, cores=parallel::detectCores(), seed=123)
# Predict
val <- predict(eccmodel, ds$val, cores=parallel::detectCores())
test <- predict(eccmodel, ds$test, cores=parallel::detectCores())
# Apply a threshold
thresholds <- scut_threshold(val, ds$val, cores=parallel::detectCores())
new.val <- fixed_threshold(val, thresholds)
new.test <- fixed_threshold(test, thresholds)
# Evaluate the models
measures <- c("subset-accuracy", "F1", "hamming-loss", "macro-based")
result <- cbind(
Test = multilabel_evaluate(ds$tes, test, measures),
TestWithThreshold = multilabel_evaluate(ds$tes, new.test, measures),
Validation = multilabel_evaluate(ds$val, val, measures),
ValidationWithThreshold = multilabel_evaluate(ds$val, new.val, measures)
)
print(round(result, 3))
More examples and details are available on functions documentations and vignettes, please refer to the documentation.
@article{RJ-2018-041,
author = {Adriano Rivolli and Andre C. P. L. F. de Carvalho},
title = {{The utiml Package: Multi-label Classification in R}},
year = {2018},
journal = {{The R Journal}},
doi = {10.32614/RJ-2018-041},
url = {https://doi.org/10.32614/RJ-2018-041},
pages = {24--37},
volume = {10},
number = {2}
}
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.