The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Lifecycle: stable Travis-CI Build Status AppVeyor Build Status Coverage Status CRAN status

unjoin

The goal of unjoin is to provide unjoin for data frames. This is exactly part of what tidyr::nest does, but with two differences:

Installation

Install unjoin from CRAN:

install.packages("unjoin")

You can install the development unjoin from github with:

# install.packages("devtools")
devtools::install_github("hypertidy/unjoin")

Example

This is a basic example which shows you how to unjoin a data frame.

library(unjoin)

unjoin(iris)
#> $.idx0
#> # A tibble: 1 x 1
#>   .idx0
#>   <int>
#> 1     1
#> 
#> $data
#> # A tibble: 150 x 6
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width Species .idx0
#>           <dbl>       <dbl>        <dbl>       <dbl> <fct>   <int>
#>  1          5.1         3.5          1.4         0.2 setosa      1
#>  2          4.9         3            1.4         0.2 setosa      1
#>  3          4.7         3.2          1.3         0.2 setosa      1
#>  4          4.6         3.1          1.5         0.2 setosa      1
#>  5          5           3.6          1.4         0.2 setosa      1
#>  6          5.4         3.9          1.7         0.4 setosa      1
#>  7          4.6         3.4          1.4         0.3 setosa      1
#>  8          5           3.4          1.5         0.2 setosa      1
#>  9          4.4         2.9          1.4         0.2 setosa      1
#> 10          4.9         3.1          1.5         0.1 setosa      1
#> # … with 140 more rows
#> 
#> attr(,"class")
#> [1] "unjoin"

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
iris %>% unjoin(Species)
#> $.idx0
#> # A tibble: 3 x 2
#>   Species    .idx0
#>   <fct>      <int>
#> 1 setosa         1
#> 2 versicolor     2
#> 3 virginica      3
#> 
#> $data
#> # A tibble: 150 x 5
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width .idx0
#>           <dbl>       <dbl>        <dbl>       <dbl> <int>
#>  1          5.1         3.5          1.4         0.2     1
#>  2          4.9         3            1.4         0.2     1
#>  3          4.7         3.2          1.3         0.2     1
#>  4          4.6         3.1          1.5         0.2     1
#>  5          5           3.6          1.4         0.2     1
#>  6          5.4         3.9          1.7         0.4     1
#>  7          4.6         3.4          1.4         0.3     1
#>  8          5           3.4          1.5         0.2     1
#>  9          4.4         2.9          1.4         0.2     1
#> 10          4.9         3.1          1.5         0.1     1
#> # … with 140 more rows
#> 
#> attr(,"class")
#> [1] "unjoin"

iris %>% unjoin(Species, Petal.Width)
#> $.idx0
#> # A tibble: 27 x 3
#>    Species    Petal.Width .idx0
#>    <fct>            <dbl> <int>
#>  1 setosa             0.2     2
#>  2 setosa             0.4     4
#>  3 setosa             0.3     3
#>  4 setosa             0.1     1
#>  5 setosa             0.5     5
#>  6 setosa             0.6     6
#>  7 versicolor         1.4    11
#>  8 versicolor         1.5    12
#>  9 versicolor         1.3    10
#> 10 versicolor         1.6    13
#> # … with 17 more rows
#> 
#> $data
#> # A tibble: 150 x 4
#>    Sepal.Length Sepal.Width Petal.Length .idx0
#>           <dbl>       <dbl>        <dbl> <int>
#>  1          5.1         3.5          1.4     2
#>  2          4.9         3            1.4     2
#>  3          4.7         3.2          1.3     2
#>  4          4.6         3.1          1.5     2
#>  5          5           3.6          1.4     2
#>  6          5.4         3.9          1.7     4
#>  7          4.6         3.4          1.4     3
#>  8          5           3.4          1.5     2
#>  9          4.4         2.9          1.4     2
#> 10          4.9         3.1          1.5     1
#> # … with 140 more rows
#> 
#> attr(,"class")
#> [1] "unjoin"

This is used to build topological data structures, with a kind of inside-out version of a nested data frame. Whether it’s of broader use is unclear.

There is a record here of some of the thinking that led to unjoin: https://github.com/r-gris/babelfish

The function unjoin replaces the method here: http://rpubs.com/cyclemumner/iout_nest

(d2 <- iris %>% unjoin(Species, Petal.Width))
#> $.idx0
#> # A tibble: 27 x 3
#>    Species    Petal.Width .idx0
#>    <fct>            <dbl> <int>
#>  1 setosa             0.2     2
#>  2 setosa             0.4     4
#>  3 setosa             0.3     3
#>  4 setosa             0.1     1
#>  5 setosa             0.5     5
#>  6 setosa             0.6     6
#>  7 versicolor         1.4    11
#>  8 versicolor         1.5    12
#>  9 versicolor         1.3    10
#> 10 versicolor         1.6    13
#> # … with 17 more rows
#> 
#> $data
#> # A tibble: 150 x 4
#>    Sepal.Length Sepal.Width Petal.Length .idx0
#>           <dbl>       <dbl>        <dbl> <int>
#>  1          5.1         3.5          1.4     2
#>  2          4.9         3            1.4     2
#>  3          4.7         3.2          1.3     2
#>  4          4.6         3.1          1.5     2
#>  5          5           3.6          1.4     2
#>  6          5.4         3.9          1.7     4
#>  7          4.6         3.4          1.4     3
#>  8          5           3.4          1.5     2
#>  9          4.4         2.9          1.4     2
#> 10          4.9         3.1          1.5     1
#> # … with 140 more rows
#> 
#> attr(,"class")
#> [1] "unjoin"

We can chain unjoins together, but make sure not to repeat a key_col in one of these.

unjoin(iris, Species, key_col = "vertex") %>% unjoin(Petal.Width, vertex,  key_col = "branch")
#> $vertex
#> # A tibble: 3 x 2
#>   Species    vertex
#>   <fct>       <int>
#> 1 setosa          1
#> 2 versicolor      2
#> 3 virginica       3
#> 
#> $branch
#> # A tibble: 27 x 3
#>    Petal.Width vertex branch
#>          <dbl>  <int>  <int>
#>  1         0.2      1      2
#>  2         0.4      1      4
#>  3         0.3      1      3
#>  4         0.1      1      1
#>  5         0.5      1      5
#>  6         0.6      1      6
#>  7         1.4      2     11
#>  8         1.5      2     13
#>  9         1.3      2     10
#> 10         1.6      2     15
#> # … with 17 more rows
#> 
#> $data
#> # A tibble: 150 x 4
#>    Sepal.Length Sepal.Width Petal.Length branch
#>           <dbl>       <dbl>        <dbl>  <int>
#>  1          5.1         3.5          1.4      2
#>  2          4.9         3            1.4      2
#>  3          4.7         3.2          1.3      2
#>  4          4.6         3.1          1.5      2
#>  5          5           3.6          1.4      2
#>  6          5.4         3.9          1.7      4
#>  7          4.6         3.4          1.4      3
#>  8          5           3.4          1.5      2
#>  9          4.4         2.9          1.4      2
#> 10          4.9         3.1          1.5      1
#> # … with 140 more rows
#> 
#> attr(,"class")
#> [1] "unjoin"

Also, there’s no escape hatch here, you can’t “unjoin” your way to normal nirvana, each unjoin needs to carry the last unjoin-key with it, and you just end up with the big link table with no attributes. It needs some kind of group-semantic to cut the chain.


Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.