The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
These are the currently implemented distributions.
Name | univariateML function | Package | Parameters | Support |
---|---|---|---|---|
Cauchy distribution | mlcauchy |
stats | location ,scale |
\(\mathbb{R}\) |
Gumbel distribution | mlgumbel |
extraDistr | mu , sigma |
\(\mathbb{R}\) |
Laplace distribution | mllaplace |
extraDistr | mu , sigma |
\(\mathbb{R}\) |
Logistic distribution | mllogis |
stats | location ,scale |
\(\mathbb{R}\) |
Normal distribution | mlnorm |
stats | mean , sd |
\(\mathbb{R}\) |
Student t distribution | mlstd |
fGarch | mean , sd , nu |
\(\mathbb{R}\) |
Generalized Error distribution | mlged |
fGarch | mean , sd , nu |
\(\mathbb{R}\) |
Skew Normal distribution | mlsnorm |
fGarch | mean , sd , xi |
\(\mathbb{R}\) |
Skew Student t distribution | mlsstd |
fGarch | mean , sd , nu , xi |
\(\mathbb{R}\) |
Skew Generalized Error distribution | mlsged |
fGarch | mean , sd , nu , xi |
\(\mathbb{R}\) |
Beta prime distribution | mlbetapr |
extraDistr | shape1 , shape2 |
\((0, \infty)\) |
Exponential distribution | mlexp |
stats | rate |
\([0, \infty)\) |
Gamma distribution | mlgamma |
stats | shape ,rate |
\((0, \infty)\) |
Inverse gamma distribution | mlinvgamma |
extraDistr | alpha , beta |
\((0, \infty)\) |
Inverse Gaussian distribution | mlinvgauss |
actuar | mean , shape |
\((0, \infty)\) |
Inverse Weibull distribution | mlinvweibull |
actuar | shape , rate |
\((0, \infty)\) |
Log-logistic distribution | mlllogis |
actuar | shape , rate |
\((0, \infty)\) |
Log-normal distribution | mllnorm |
stats | meanlog , sdlog |
\((0, \infty)\) |
Lomax distribution | mllomax |
extraDistr | lambda , kappa |
\([0, \infty)\) |
Rayleigh distribution | mlrayleigh |
extraDistr | sigma |
\([0, \infty)\) |
Weibull distribution | mlweibull |
stats | shape ,scale |
\((0, \infty)\) |
Log-gamma distribution | mllgamma |
actuar | shapelog , ratelog |
\((1, \infty)\) |
Pareto distribution | mlpareto |
extraDistr | a , b |
\([b, \infty)\) |
Beta distribution | mlbeta |
stats | shape1 ,shape2 |
\((0, 1)\) |
Kumaraswamy distribution | mlkumar |
extraDistr | a , b |
\((0, 1)\) |
Logit-normal | mllogitnorm |
logitnorm | mu , sigma |
\((0, 1)\) |
Uniform distribution | mlunif |
stats | min , max |
\([\min, \max]\) |
Power distribution | mlpower |
extraDistr | alpha , beta |
\([0, a)\) |
This package follows a naming convention for the ml***
functions. To access the
documentation of the distribution associated with an ml***
function, write package::d***
.
For instance, to find the documentation for the log-gamma distribution write
?actuar::dlgamma
The maximum likelihood estimator of the Lomax distribution frequently fails to exist. For assume \(\kappa\to\lambda^{-1}\overline{x}^{-1}\) and \(\lambda\to0\). The density \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\kappa+1\right)}\) is approximately equal to \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\) when \(\lambda\) is small enough. Since \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\to\overline{x}^{-1}e^{-\overline{x}^{-1}x}\), the density converges to an exponential density.
eps = 0.1
x = seq(0, 3, length.out = 100)
plot(dexp, 0, 3, xlab = "x", ylab = "Density", main = "Exponential and Lomax")
lines(x, extraDistr::dlomax(x, lambda = eps, kappa = 1/eps), col = "red")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.