The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Efficient estimation of the population-level causal effects of stochastic interventions on a continuous-valued exposure. Both one-step and targeted minimum loss estimators are implemented for the counterfactual mean value of an outcome of interest under an additive modified treatment policy, a stochastic intervention that may depend on the natural value of the exposure. To accommodate settings with outcome-dependent two-phase sampling, procedures incorporating inverse probability of censoring weighting are provided to facilitate the construction of inefficient and efficient one-step and targeted minimum loss estimators. The causal parameter and its estimation were first described by Díaz and van der Laan (2013) <doi:10.1111/j.1541-0420.2011.01685.x>, while the multiply robust estimation procedure and its application to data from two-phase sampling designs is detailed in NS Hejazi, MJ van der Laan, HE Janes, PB Gilbert, and DC Benkeser (2020) <doi:10.1111/biom.13375>. The software package implementation is described in NS Hejazi and DC Benkeser (2020) <doi:10.21105/joss.02447>. Estimation of nuisance parameters may be enhanced through the Super Learner ensemble model in 'sl3', available for download from GitHub using 'remotes::install_github("tlverse/sl3")'.
Version: | 0.3.8 |
Depends: | R (≥ 3.2.0) |
Imports: | stats, stringr, data.table, assertthat, mvtnorm, hal9001 (≥ 0.4.1), haldensify (≥ 0.2.1), lspline, ggplot2, scales, latex2exp, Rdpack |
Suggests: | testthat, knitr, rmarkdown, covr, future, future.apply, origami (≥ 1.0.3), ranger, Rsolnp, nnls |
Enhances: | sl3 (≥ 1.4.3) |
Published: | 2022-02-09 |
DOI: | 10.32614/CRAN.package.txshift |
Author: | Nima Hejazi [aut, cre, cph], David Benkeser [aut], Iván Díaz [ctb], Jeremy Coyle [ctb], Mark van der Laan [ctb, ths] |
Maintainer: | Nima Hejazi <nh at nimahejazi.org> |
BugReports: | https://github.com/nhejazi/txshift/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/nhejazi/txshift |
NeedsCompilation: | no |
Citation: | txshift citation info |
Materials: | README NEWS |
CRAN checks: | txshift results |
Reference manual: | txshift.pdf |
Vignettes: |
Evaluating Causal Effects of Modified Treatment Policies |
Package source: | txshift_0.3.8.tar.gz |
Windows binaries: | r-devel: txshift_0.3.8.zip, r-release: txshift_0.3.8.zip, r-oldrel: txshift_0.3.8.zip |
macOS binaries: | r-release (arm64): txshift_0.3.8.tgz, r-oldrel (arm64): txshift_0.3.8.tgz, r-release (x86_64): txshift_0.3.8.tgz, r-oldrel (x86_64): txshift_0.3.8.tgz |
Old sources: | txshift archive |
Please use the canonical form https://CRAN.R-project.org/package=txshift to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.