The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: The Two Parameter Exponential Distribution
Version: 0.1.0
Maintainer: Atchanut Rattanalertnusorn <atchanut_r@rmutt.ac.th>
Description: Density, distribution function, quantile function, and random generation function, maximum likelihood estimation (MLE), penalized maximum likelihood estimation (PMLE), the quartiles method estimation (QM), and median rank estimation (MEDRANK) for the two-parameter exponential distribution. MLE and PMLE are based on Mengjie Zheng (2013)https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf. QM is based on Entisar Elgmati and Nadia Gregni (2016)<doi:10.5539/ijsp.v5n5p12>. MEDRANK is based on Matthew Reid (2022)<doi:10.5281/ZENODO.3938000>.
License: GPL-3
Language: en-US
Encoding: UTF-8
RoxygenNote: 7.1.2
Imports: graphics, stats
Depends: R (≥ 2.10)
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2023-06-12 22:16:30 UTC; COM
Author: Atchanut Rattanalertnusorn [aut, cre]
Repository: CRAN
Date/Publication: 2023-06-13 08:30:02 UTC

Distribution function plot of the two-parameter exponential distribution

Description

Distribution function plot of the two-parameter exponential distribution with theta and beta

Usage

cdfplot(x, theta, beta)

Arguments

x

vector of quantile.

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0.

Value

a distribution function plot of the two-parameter exponential distribution

Examples

x <- seq(0,20,by=0.01)
theta <- 6
beta <- 2
cdfplot(x,theta,beta)

Median rank method to estimate parameters of the two-parameter exponential dist.

Description

Median rank method to estimate parameters of the two-parameter exponential dist.

Usage

medrank(x, methods = c("B"))

Arguments

x

vector of quantile (or a data set).

methods

there are some of median rank methods as follows; "B" stand for Benard median rank method (default), "BL" stand for Blom method, "MKM" stand for Hazen (Modified Kaplan Meier) method, "OT" stand for The one-third method, and "C" stand for Cunane method

Value

the estimate three values for the two-parameter exponential dist. as follows: theta.hat gives the estimate location parameter, beta.hat gives the estimate scale parameter, and lamda.hat gives the estimate the rate.

Source

Reid, M. (2022). Reliability – a Python library for reliability engineering (Version 0.8.2) [Computer software]. Zenodo. doi: 10.5281/ZENODO.3938000.

Examples

x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
medrank(x1,"B")    # Benard method (default) or medrank(x1)


Maximum likelihood estimation for the two-parameter exponential dist.

Description

To estimate the location (or shift) and scale parameters for the two-parameter exponential distribution based on maximum likelihood method. See detail in source

Usage

mle_tpexp(x, theta = 0, beta = 1)

Arguments

x

vector of quantile (or a data set).

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0 and rate=1/\beta.

Value

the estimate three values for the two-parameter exponential dist. as follows: theta.hat gives the estimate location parameter, beta.hat gives the estimate scale parameter, and lamda.hat gives the estimate the rate.

Source

Zheng, M. (2013). Penalized Maximum Likelihood Estimation of Two-Parameter Exponential Distributions [Master’s thesis]. https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf

Examples

x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
mle_tpexp(x1)
x2 <- c(20,15,10,25,35,30,40,70,50,60,90,100,80,5) # test a data set
mle_tpexp(x2)


Density plot of the two-parameter exponential distribution

Description

Density plot of the two-parameter exponential distribution with theta and beta

Usage

pdfplot(x, theta, beta)

Arguments

x

vector of quantile.

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0.

Value

a density plot of the two-parameter exponential distribution

Examples

x <- seq(0,20,by=0.01)
theta <- 6
beta <- 2
pdfplot(x,theta,beta)

Penalized maximum likelihood estimation for the two-parameter exponential dist.

Description

To estimate the location (or shift) and scale parameters for the two-parameter exponential distribution based on penalized maximum likelihood method. See detail in source

Usage

pmle_tpexp(x, theta = 0, beta = 1)

Arguments

x

vector of quantile (or a data set).

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0 and rate=1/\beta.

Value

the estimate three values for the two-parameter exponential dist. as follows: ptheta.hat gives the estimate location parameter, pbeta.hat gives the estimate scale parameter, and plamda.hat gives the estimate the rate.

Source

Zheng, M. (2013). Penalized Maximum Likelihood Estimation of Two-Parameter Exponential Distributions [Master’s thesis]. https://scse.d.umn.edu/sites/scse.d.umn.edu/files/mengjie-thesis_masters-1.pdf

Examples

x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
pmle_tpexp(x1)
x2 <- c(20,15,10,25,35,30,40,70,50,60,90,100,80,5) # test a data set
pmle_tpexp(x2)


Quartile method estimation of the two-parameter exponential distribution

Description

To estimate the location (or shift) and scale parameters for the two-parameter exponential distribution based on quartile method. See detail in source

Usage

qm_tpexp(x, methods = c("Q13"))

Arguments

x

vector of quantile (or a data set).

methods

there are two quartile methods as follows; "Q13" stand for the first and the third quartile method (default), and "Q12" stand for the first and the second quartile (median) method.

Value

the estimate three values for the two-parameter exponential dist. as follows: qmtheta.hat gives the estimate location parameter, qmbeta.hat gives the estimate scale parameter, and qmlamda.hat gives the estimate the rate.

Source

Elgmati, E., Gregni, N. (2016). Quartile Method Estimation of Two-Parameter Exponential Distribution Data with Outliers. International Journal of Statistics and Probability, 5(5), 12-15. doi: 10.5539/ijsp.v5n5p12

Examples

x1 <- c(25,43,53,65,76,86,95,115,132,150) # test a data set
qm_tpexp(x1,"Q13")  # or qm_tpexp(x1)
qm_tpexp(x1,"Q12")


Survival function plot of the two-parameter exponential distribution

Description

Survival function plot of the two-parameter exponential distribution with theta and beta

Usage

surplot(x, theta, beta)

Arguments

x

vector of quantile.

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0.

Value

a survival function plot of the two-parameter exponential distribution

Examples

x <- seq(0,20,by=0.01)
theta <- 8
beta <- 1
surplot(x,theta,beta)

The two-parameter exponential distribution(tpexp)

Description

Density, distribution function, quantile function, and random generation function for the two-parameter exponential distribution with theta and beta

Usage

dtpexp(x, theta = 0, beta = 1, log = FALSE)

ptpexp(q, theta = 0, beta = 1, lower.tail = TRUE, log.p = FALSE)

qtpexp(p, theta = 0, beta = 1, lower.tail = TRUE, log.p = FALSE)

rtpexp(n, theta = 0, beta = 1)

Arguments

x, q

vector of quantile.

theta

location parameter, where \theta > 0.

beta

scale parameter, where \beta > 0 and rate=1/\beta.

log, log.p

logical; (default = FALSE), if TRUE, then probabilities are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].

p

vector of probabilities

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Value

dtpexp gives the density, ptpexp gives the distribution function, qtpexp gives the quantile function, and rtpexp generates random samples.

Examples


x <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
dtpexp(x,theta=0,beta=1)
dtpexp(x,theta=0,beta=1,log=TRUE)

q <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
ptpexp(q,theta = 0, beta = 1)
ptpexp(q,theta=0, beta = 1, lower.tail = FALSE)

q <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)
p<- ptpexp(q,theta = 0, beta = 1); p
qtpexp(p,theta=0, beta = 1)

rtpexp(5, theta=0, beta=1)
rtpexp(10, theta=1, beta=1.5)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.