The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Transforms cumulative hazard estimates to estimate survival analysis parameters specified by differential equations. We demonstrate how the method works on some commonly studied parameters.
We are interested in assessing parameters that solve differential equations driven by cumulative hazards \(A\), i.e. \[\begin{equation}X_t = X_0 + \int_0^t F(X_s) dA_s,\end{equation}\] where \(F = (F_1,F_2,\cdots)\) is Lipschitz, two times continuously differentiable, and satisfies a linear growth bound. Several examples of such parameters can be found in 1 2. The main function pluginEstimate in this package estimate such parameters. Among other things, pluginEstimate has the following input
We illustrate how to provide the correct inputs by use of examples below.
The survival function \(S\) solves a differential equation with initial value 1; \[\begin{equation} S_t = 1 - \int_0^t S_{s} dA_s.\end{equation}\]
We generate a sample of exponentially distributed survival times with independent censoring, and calculate cumulative hazard estimates
<- 300
n1 <- rexp(n1,1)
Samp1 <- runif(n1)*4
cTimes <- pmin(Samp1,cTimes)
Samp1 <- cTimes != Samp1
isNotCensored <- rep(0,n1)
startTimes1
<- aalen(Surv(startTimes1,Samp1,isNotCensored)~1) aaMod1
We want to estimate the survival function. The cumulative hazard estimates are inserted as a time-ordered matrix where each column is an increment of the vector of cumulatie hazard estimates;
<- diff(c(0,aaMod1$cum[,2]))
dA_est1 <- matrix(dA_est1,nrow=1) hazMatrix
In this case, \(F\) takes the simple form \(F(x) = -x\), and its Jacobian is therefore \(J_{F}(x) = -1\). These must be provided as matrix-valued functions;
<- function(X)matrix(-X,nrow=1,ncol=1)
F_survival <- list(function(X)matrix(-1,nrow=1,ncol=1)) F_survival_JacobianList
We obtain plugin estimates of \(S\) and its covariance using the call
<- pluginEstimate(n1, hazMatrix, F_survival, F_survival_JacobianList,matrix(1,nrow=1,ncol=1),matrix(0,nrow=1,ncol=1)) param
Finally, we may plot the results with approximate 95 % confidence intervals
<- aaMod1$cum[,1]
times1 plot(times1,param$X,type="s",xlim=c(0,4),xlab="t",ylab="",main="Survival")
lines(times1,param$X + 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2)
lines(times1,param$X - 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2)
lines(times1,exp(-times1),col=2)
legend("topright",c("estimated","true"),lty=1,col=c(1,2),bty="n")
The restricted mean survival function \(R\) solves the system \[\begin{equation} \begin{pmatrix} S_t \\ R_t \end{pmatrix} = \begin{pmatrix}1 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_{s} & 0 \\ 0 & S_s \end{pmatrix}d \begin{pmatrix}A_s \\ s \end{pmatrix},\end{equation}\]
where \(S\) is the survival function. Here, the colums of \(F\), \(F_1\) and \(F_2\), are given by \[\begin{equation} F_1(x_1,x_2) = \begin{pmatrix} -x_1 \\ 0 \end{pmatrix}, F_2(x_1,x_2) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}.\end{equation}\] The Jacobian matrices are therefore \[\begin{equation} J_{F_1}(x_1,x_2) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, J_{F_2}(x_1,x_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \end{equation}\] We define these along with initial values below
<- function(X)matrix(c(-X[1],0,0,X[1]),nrow=2)
F_restrict <- list(function(X)matrix(c(-1,0,0,0),nrow=2),
F_restrict_JacobianList function(X)matrix(c(0,0,1,0),nrow=2,byrow=T))
<- matrix(c(1,0),nrow=2)
X0_restrict <- matrix(0,nrow=2,ncol=2) V0_restrict
The restricted mean survival is a ‘regular’ (i.e. Lebesgue) integral, and we must therefore provide the time increments. We choose the time interval \([0,4]\) in \(10^4\) increments:
<- seq(0,4,length.out = 1e4+1)
fineTimes
<- sort(unique(c(fineTimes,times1)))
tms
<- matrix(0,nrow=2,ncol=length(tms))
hazMatrix 1,match(times1,tms)] <- dA_est1
hazMatrix[2,] <- diff(c(0,tms)) hazMatrix[
We obtain plugin estimates using the call (note the last argument that in this example can be used to improve efficiency);
<- pluginEstimate(n1, hazMatrix, F_restrict, F_restrict_JacobianList,X0_restrict,V0_restrict,isLebesgue = 2) param
We plot the results
plot(tms,param$X[2,],type="s",xlim=c(0,4),ylim=c(0,1.5),xlab="t",ylab="",main="Restricted mean survival")
lines(tms,param$X[2,] + 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2)
lines(tms,param$X[2,] - 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2)
lines(tms,1 - exp(-tms),col=2)
legend("topleft",c("estimated","true"),lty=1,col=c(1,2),bty="n")
We generate another set of exponentially distributed survival times and compare the two groups. A new matrix of cumulative hazard increments must be created;
<- 200
n2 <- rexp(n2,1.3)
Samp2 <- runif(n2)*3
censTimes2 <- pmin(Samp2,censTimes2)
Samp2 <- censTimes2 != Samp2
isNotCensored2 <- rep(0,n2)
startTimes2
<- aalen(Surv(startTimes2,Samp2,isNotCensored2)~1)
aaMod2 <- diff(c(0,aaMod2$cum[,2]))
dA_est2
<- aaMod2$cum[,1]
times2 <- sort(unique(c(times1,times2)))
times
<- matrix(0,nrow=2,ncol=length(times))
hazMatrix 1,match(times1,times)] <- dA_est1
hazMatrix[2,match(times2,times)] <- dA_est2 hazMatrix[
The relative survival function \(RS\) between groups 1 and 2 solve the equation \[\begin{equation} RS_t = 1 + \int_0^t \begin{pmatrix} -RS_s & RS_s\end{pmatrix} d\begin{pmatrix} A_s^1 \\ A_s^2 \end{pmatrix}, \end{equation}\]
i.e. \(F(x) = (-x,x)\). The Jacobians of the columns of \(F\) are \(J_{F_1}(x) = -1\), and \(J_{F_2}(x) = 1\). We specify these functions as follows:
<- function(X)matrix(c(-X,X),nrow=1)
F_relsurv <- list(function(X)matrix(-1,nrow=1),
F_relsurv_JacobianList function(X)matrix(1,nrow=1))
The estimates are then obtained by the call
<- pluginEstimate(n1+n2, hazMatrix, F_relsurv, F_relsurv_JacobianList,matrix(1,nrow=1,ncol=1),matrix(0,nrow=1,ncol=1)) param
We may plot the results with approximate 95% confidence intervals
plot(times,param$X,type="s",xlim=c(0,4),ylim=c(-0.5,4),xlab="t",ylab="",main="Relative survival")
lines(times,param$X + 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2)
lines(times,param$X - 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2)
lines(times,exp(-times*(1/1.3 - 1)),col=2)
legend("topleft",c("estimated","true"),lty=1,col=c(1,2),bty="n")
We may be in a situation with two competing risks. The cumulative incidences \(C^1,C^2\) solve the system \[\begin{equation} \begin{pmatrix} S_t \\ C_t^1 \\ C_t^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_s & -S_s \\ S_s & 0 \\ 0 & S_s \end{pmatrix} d \begin{pmatrix} A^1_s \\ A^2_s \end{pmatrix}, \end{equation}\] where \(S\) is the survival. The first columns of \(F\) are
\[\begin{equation}F_1(x_1,x_2,x_2) = \begin{pmatrix} -x_1 \\ x_1 \\ 0 \end{pmatrix}, F_2(x_1,x_2,x_2) = \begin{pmatrix} -x_1 \\ 0 \\ x_1 \end{pmatrix} \end{equation}\]
The reader may verify that the Jacobian matrix of \(F_1\) and \(F_1\) are \[\begin{equation} J_{F_1}(x_1,x_2,x_3) = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , J_{F_2}(x_1,x_2,x_3) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \end{equation}\]
We specify the function \(F\) and the list of the Jacobian matrices below, along with the initial values:
<- function(X)matrix(c(-X[1],-X[1],X[1],0,0,X[1]),nrow=3,byrow=T)
F_cuminc <- list(function(X)matrix(c(-1,0,0,1,0,0,0,0,0),nrow=3,byrow=T),
F_cuminc_JacobianList function(X)matrix(c(-1,0,0,0,0,0,1,0,0),nrow=3,byrow=T))
<- matrix(c(1,0,0),nrow=3)
X0_cuminc <- matrix(0,nrow=3,ncol=3) v0_cuminc
Now for obtaining hazard estimates. We generate survival times first, before sampling two causes of death (and censoring). We then estimate the cause-specific cumulative hazards, and transform the estimates:
# Generate the data
<- data.frame(from=0,to=rexp(n1+n2,1),from.state = 1)
dfr
# Adding causes of death (to.state = 2 or 3) and censoring (to.state = 0)
$to.state <- sample(c(0,2,3),n1+n2,replace=T,prob=c(0.2,0.2,0.6))
dfr
# Obtaining cause-specific cumulative hazard estimates and extracting the increments
<- aalen(Surv(from,to,to.state %in% c(2)) ~1, data=dfr)
aamod22 <- aalen(Surv(from,to,to.state %in% c(3)) ~1, data=dfr)
aamod33 = sort(unique(c(aamod22$cum[,1],aamod33$cum[,1])))
tmss = matrix(0,nrow=2,ncol=length(tmss))
hazMatrix = match(aamod22$cum[,1],tmss)
mt1 = match(aamod33$cum[,1],tmss)
mt2 1,mt1] = diff(c(0, aamod22$cum[,2] ))
hazMatrix[2,mt2] = diff(c(0, aamod33$cum[,2] ))
hazMatrix[
# Transforming the estimates
<- pluginEstimate(n1+n2,hazMatrix,F_cuminc,F_cuminc_JacobianList,X0_cuminc,v0_cuminc) param
Finally, we plot the estimates of the cumulative incidences \(C^1\) and \(C^2\) with confidence intervals:
plot(tmss,param$X[2,],type="s",xlim=c(0,4),ylim=c(0,1),xlab="t",ylab="",main="Cumulative incidence")
lines(tmss,param$X[2,] + 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2)
lines(tmss,param$X[2,] - 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2)
lines(tmss,param$X[3,],type="s",col=3)
lines(tmss,param$X[3,] + 1.96 * sqrt(param$covariance[3,3,]),type="s",lty=2,col=3)
lines(tmss,param$X[3,] - 1.96 * sqrt(param$covariance[3,3,]),type="s",lty=2,col=3)
legend("topleft",c(expression(C^1),expression(C^2)),lty=1,col=c(1,3),bty="n")
By re-specifying the ODE system we can compare two groups. We illustrate this in the restricted mean survival example. Consider the system
\[\begin{equation} \begin{pmatrix} R_t^1 \\ R^2 \\ RD \\ S^1 \\ S^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \int_0^t \begin{pmatrix} S^1_{s} & 0 & 0 \\ S^2_{s} & 0 & 0 \\ S^1_{s} - S^2_{s} & 0 & 0 \\ 0 & -S_s^1 & 0 \\ 0 & 0 & -S_s^2 \end{pmatrix}d \begin{pmatrix}s \\ A_s^1 \\ A_s^2 \end{pmatrix},\end{equation}\]
where \(S^i\) is the survival function in group \(i\). We specify matrix-valued functions and initial values as before:
<- function(X)matrix(c(X[4],0,0,
F_restrict_diff 5],0,0,
X[4]-X[5],0,0,
X[0,-X[4],0,
0,0,-X[5]),nrow=5,byrow=T)
<- list(function(X)matrix(c(0,0,0,1,0,
F_restrict_diff_JacobianList 0,0,0,0,1,
0,0,0,1,-1,
rep(0,10)),nrow=5,byrow=T),
function(X)matrix(c(rep(0,18),-1,rep(0,6)),nrow=5,byrow=T),
function(X)matrix(c(rep(0,24),-1),nrow=5,byrow=T))
<- matrix(c(0,0,0,1,1),nrow=5)
X0_restrict_diff <- matrix(0,nrow=5,ncol=5) V0_restrict_diff
We compare RMS for males and females in the flchain data set in the survival package. Specifying hazmatrix:
= aalen(Surv(futime,death==1)~1, data = flchain[flchain$sex=="M",])
aa_male = aalen(Surv(futime,death==1)~1, data = flchain[flchain$sex=="F",])
aa_female
<- sort(unique(c(fineTimes,aa_male$cum[,1], aa_female$cum[,1])))
tms = match(aa_male$cum[,1],tms)
mt_male = match(aa_female$cum[,1],tms)
mt_female
<- matrix(0,nrow=3,ncol=length(tms))
hazMatrix 1,] <- diff(c(0,tms))
hazMatrix[2,mt_male] <- diff(c(0,aa_male$cum[,2]))
hazMatrix[3,mt_female] <- diff(c(0,aa_female$cum[,2]))
hazMatrix[
<- pluginEstimate(1, hazMatrix, F_restrict_diff, F_restrict_diff_JacobianList,X0_restrict_diff,V0_restrict_diff,isLebesgue = 1)
plugEst = list(plugEst=plugEst, tms=tms) param
Plotting \(\hat{RD} = \hat R^1 - \hat R^2\) with 95% confidence intervals:
= c(1.1*min(param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,])),
ylims 1.1*max(param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,])))
plot(param$tms,param$plugEst$X[3,],type="s",ylim=ylims,ylab="",main="RMS difference",xlab="years")
lines(param$tms,param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2)
lines(param$tms,param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2)
abline(a=0,b=0,col=2)
Consider a similar example with differences of cumulative incidence functions
\[\begin{equation} \begin{pmatrix} S^a_t \\ S_t^b \\ C_t^{a,1} \\ C_t^{a,2} \\ C_t^{b,1} \\ C_t^{b,2} \\ CD_t^1 \\ CD_t^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_s^a & -S_s^a & 0 & 0 \\ 0 & 0 & -S_s^b & -S_s^b \\ S_s^a & 0 & 0 & 0 \\ 0 & S_s^a & 0 & 0 \\ 0 & 0 & S_s^b & 0 \\ 0 & 0 & 0 & S_s^b \\ S_s^a & 0 & -S_s^b & 0 \\ 0 & S_s^a & 0 & -S_s^b \end{pmatrix} d \begin{pmatrix} A^{a,1}_s \\ A^{a,2}_s \\ A^{b,1}_s \\ A^{b,2}_s \end{pmatrix}, \end{equation}\] where \(S^a\) is the survival in group \(a\) and \(S^b\) is the survival in group \(b\), and \(C^{a,j}\) is the cumulative incidence for cause \(j\) in group \(a\) and similarly for group \(b\). \(CD^i = C^{a,i} - C^{b,i}\) is the cumulative incidence difference for cause \(i\). We specify the ODE system.
<- function(X)matrix( c(-X[1],-X[1],0,0,
F_cuminc_diff 0,0,-X[2],-X[2],
1],0,0,0,
X[0,X[1],0,0,
0,0,X[2],0,
0,0,0,X[2],
1],0,-X[2],0,
X[0,X[1],0,-X[2]) ,nrow=8,byrow=T)
<- list(function(X)matrix(c(-1, rep(0,7),
F_cuminc_diff_JacobianList rep(0,8),
1, rep(0,7),
rep(0,8),
rep(0,8),
rep(0,8),
1, rep(0,7),
rep(0,8)),nrow=8,byrow=T),
function(X)matrix(c(-1, rep(0,7),
rep(0,8),
rep(0,8),
1, rep(0,7),
rep(0,8),
rep(0,8),
rep(0,8),
1, rep(0,7)),nrow=8,byrow=T),
function(X)matrix(c(rep(0,8),
0,-1, rep(0,6),
rep(0,8),
rep(0,8),
0,1, rep(0,6),
rep(0,8),
0,-1, rep(0,6),
rep(0,8)),nrow=8,byrow=T),
function(X)matrix(c(rep(0,8),
0,-1, rep(0,6),
rep(0,8),
rep(0,8),
rep(0,8),
0,1, rep(0,6),
rep(0,8),
0,-1, rep(0,6)),nrow=8,byrow=T))
<- matrix(c(1,1,0,0,0,0,0,0),nrow=8)
X0_cuminc_diff <- matrix(0,nrow=8,ncol=8) v0_cuminc_diff
We inspect cumulative incidences of the competing events PCM, and death without malignancy, in the mgus2 data set. We compare males and females in this data set. Specifying hazmatrix:
$etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
mgus2<- with(mgus2, ifelse(pstat==0, 2*death, 1))
event $event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
mgus2
<- mgus2[mgus2$sex == "M",]
fr_M $time <- fr_M$etime/12
fr_M<- mgus2[mgus2$sex == "F",]
fr_F $time <- fr_F$etime/12
fr_F
= aalen(Surv(time,event=="pcm")~1,data=fr_M)
fit_PCM_M = aalen(Surv(time,event=="death")~1,data=fr_M)
fit_death_M
= aalen(Surv(time,event=="pcm")~1,data=fr_F)
fit_PCM_F = aalen(Surv(time,event=="death")~1,data=fr_F)
fit_death_F
= sort(unique(c(fit_PCM_M$cum[,1],fit_PCM_F$cum[,1],
tms2 $cum[,1],fit_death_F$cum[,1])))
fit_death_M
= dA_death_M = dA_PCM_F = dA_death_F = rep(0, length(tms2))
dA_PCM_M
match(fit_PCM_M$cum[,1], tms2)] = diff(c(0,fit_PCM_M$cum[,2]))
dA_PCM_M[match(fit_PCM_F$cum[,1], tms2)] = diff(c(0,fit_PCM_F$cum[,2]))
dA_PCM_F[
match(fit_death_M$cum[,1], tms2)] = diff(c(0,fit_death_M$cum[,2]))
dA_death_M[match(fit_death_F$cum[,1], tms2)] = diff(c(0,fit_death_F$cum[,2]))
dA_death_F[
<- matrix(0,nrow=4,ncol=length(tms2))
hazMatrix 1,] <- dA_PCM_M
hazMatrix[2,] <- dA_death_M
hazMatrix[3,] <- dA_PCM_F
hazMatrix[4,] <- dA_death_F
hazMatrix[
<- pluginEstimate(1, hazMatrix, F_cuminc_diff, F_cuminc_diff_JacobianList,X0_cuminc_diff,v0_cuminc_diff)
plugEst = list(plugEst=plugEst, tms=tms2) param
Plotting \(\hat{CD}^1\) and \(\hat{CD}^2\) with 95% confidence intervals:
# Colors
<- "red"
male_color <- "blue"
female_color <- "gray"
diff_color
par(mfrow=c(1,2))
# Plot with colors and labels
plot(param$tms, param$plugEst$X[3,],type="s",ylim=c(-0.2,0.9),main="Cum.inc. PCM",
ylab="",xlab="Years", col=male_color)
lines(param$tms, param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2, col=male_color)
lines(param$tms, param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2, col=male_color)
lines(param$tms, param$plugEst$X[5,],type="s", col=female_color)
lines(param$tms, param$plugEst$X[5,] + 1.96 * sqrt(param$plugEst$covariance[5,5,]),type="s",lty=2, col=female_color)
lines(param$tms, param$plugEst$X[5,] - 1.96 * sqrt(param$plugEst$covariance[5,5,]),type="s",lty=2, col=female_color)
lines(param$tms, param$plugEst$X[7,],type="s", col=diff_color)
lines(param$tms, param$plugEst$X[7,] + 1.96 * sqrt(param$plugEst$covariance[7,7,]),type="s",lty=2, col=diff_color)
lines(param$tms, param$plugEst$X[7,] - 1.96 * sqrt(param$plugEst$covariance[7,7,]),type="s",lty=2, col=diff_color)
abline(a=0,b=0,col=2)
# Add legend
legend("topleft", legend = c("Males", "Females", "Difference"), col = c(male_color, female_color, diff_color), lty = 1,bty="n")
# Plot with colors and labels
plot(param$tms, param$plugEst$X[4,],type="s",ylim=c(-0.2,0.9),main="Cum.inc. death",
ylab="",xlab="Years", col=male_color)
lines(param$tms, param$plugEst$X[4,] + 1.96 * sqrt(param$plugEst$covariance[4,4,]),type="s",lty=2, col=male_color)
lines(param$tms, param$plugEst$X[4,] - 1.96 * sqrt(param$plugEst$covariance[4,4,]),type="s",lty=2, col=male_color)
lines(param$tms, param$plugEst$X[6,],type="s", col=female_color)
lines(param$tms, param$plugEst$X[6,] + 1.96 * sqrt(param$plugEst$covariance[6,6,]),type="s",lty=2, col=female_color)
lines(param$tms, param$plugEst$X[6,] - 1.96 * sqrt(param$plugEst$covariance[6,6,]),type="s",lty=2, col=female_color)
lines(param$tms, param$plugEst$X[8,],type="s", col=diff_color)
lines(param$tms, param$plugEst$X[8,] + 1.96 * sqrt(param$plugEst$covariance[8,8,]),type="s",lty=2, col=diff_color)
lines(param$tms, param$plugEst$X[8,] - 1.96 * sqrt(param$plugEst$covariance[8,8,]),type="s",lty=2, col=diff_color)
abline(a=0,b=0,col=2)
# Add legend
legend("topleft", legend = c("Males", "Females", "Difference"), col = c(male_color, female_color, diff_color), lty = 1,bty="n")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.