The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Methods to unify the different ways of creating predictive models and their different predictive formats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Alfaro, Matias Gamez, Noelia García (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>, Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.
Version: | 2.2.0 |
Depends: | R (≥ 3.5) |
Imports: | neuralnet (≥ 1.44.2), rpart (≥ 4.1-13), xgboost (≥ 0.81.0.1), randomForest (≥ 4.6-14), e1071 (≥ 1.7-0.1), kknn (≥ 1.3.1), dplyr (≥ 0.8.0.1), MASS (≥ 7.3-53), ada (≥ 2.0-5), nnet (≥ 7.3-12), stringr (≥ 1.4.0), adabag, glmnet, ROCR, gbm, ggplot2 |
Published: | 2023-11-09 |
DOI: | 10.32614/CRAN.package.traineR |
Author: | Oldemar Rodriguez R. [aut, cre], Andres Navarro D. [aut], Ariel Arroyo S. [aut], Diego Jimenez A. [aut] |
Maintainer: | Oldemar Rodriguez R. <oldemar.rodriguez at ucr.ac.cr> |
BugReports: | https://github.com/PROMiDAT/traineR/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://promidat.website/,https://github.com/PROMiDAT/traineR |
NeedsCompilation: | no |
CRAN checks: | traineR results |
Reference manual: | traineR.pdf |
Package source: | traineR_2.2.0.tar.gz |
Windows binaries: | r-devel: traineR_2.2.0.zip, r-release: traineR_2.2.0.zip, r-oldrel: traineR_2.2.0.zip |
macOS binaries: | r-release (arm64): traineR_2.2.0.tgz, r-oldrel (arm64): traineR_2.2.0.tgz, r-release (x86_64): traineR_2.2.0.tgz, r-oldrel (x86_64): traineR_2.2.0.tgz |
Old sources: | traineR archive |
Reverse imports: | predictoR, regressoR |
Please use the canonical form https://CRAN.R-project.org/package=traineR to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.