The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Under the hood, a track table is a data frame with a few extra bells
and whistles. Therefore, you can manipulate a track table in the same
way you would a base::data.frame
,
tibble::tibble
, or data.table::data.table
(depending on the data frame class you used as a base for your track
table). Anything that you can do with one of these three data frame
classes can be done the same way with a track table.
There are, however, a few additional things that are specific to track tables and we will review them in this vignette.
But first, let’s load a track table that is provided with
trackdf
:
## Track table [7195 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=longlat
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 15.76468 -22.37957
## 2 1 2015-09-10 07:00:01 15.76468 -22.37957
## 3 1 2015-09-10 07:00:04 15.76468 -22.37958
## 4 1 2015-09-10 07:00:05 15.76468 -22.37958
## 5 1 2015-09-10 07:00:08 15.76467 -22.37959
## 6 1 2015-09-10 07:00:09 15.76467 -22.37959
## 7 1 2015-09-10 07:00:09 15.76467 -22.37959
## 8 1 2015-09-10 07:00:10 15.76467 -22.37959
## 9 1 2015-09-10 07:00:11 15.76467 -22.37959
## 10 1 2015-09-10 07:00:12 15.76467 -22.37959
## [ reached 'max' / getOption("max.print") -- omitted 7185 rows ]
This track table contains the GPS coordinates of two goats foraging through the Tsaobis Nature Park in Namibia, sometimes in 2015.
In addition to the usual information that you can ask about a data frame (e.g., the number of rows and columns, the class of each column, etc), you can access additional information about the content of a track table.
First, you can check whether an object is indeed a track table as follows:
## [1] TRUE
You can also check whether the track table contains geographic coordinates or not as follows:
## [1] TRUE
You can find out the number of different tracks included in the track table as follows:
## [1] 2
Finally, you can retrieve the dimensionality (2D or 3D) of the track table as follows:
## [1] 2
Accessing and modifying the different parts (rows, columns, elements) of a track table is similar to accessing and modifying the different parts of the underlying data frame. We will, therefore, not discuss this topic further as it is something that you should already be very familar with.
Note, however, that different data frame classes may do thing
slightly differently from each other. Make sure to know what class is
used with the track tables you are working with. For instance, the track
table that we loaded for this tutorial if of class
data.frame
, as indicated in the 6th line of the print out
of the track table:
## Track table [7195 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=longlat
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 15.76468 -22.37957
## 2 1 2015-09-10 07:00:01 15.76468 -22.37957
## 3 1 2015-09-10 07:00:04 15.76468 -22.37958
## 4 1 2015-09-10 07:00:05 15.76468 -22.37958
## 5 1 2015-09-10 07:00:08 15.76467 -22.37959
## 6 1 2015-09-10 07:00:09 15.76467 -22.37959
## 7 1 2015-09-10 07:00:09 15.76467 -22.37959
## 8 1 2015-09-10 07:00:10 15.76467 -22.37959
## 9 1 2015-09-10 07:00:11 15.76467 -22.37959
## 10 1 2015-09-10 07:00:12 15.76467 -22.37959
## [ reached 'max' / getOption("max.print") -- omitted 7185 rows ]
One particularity of track tables over regular data frames is that they can store geographic data explicitly and perform projection operations to change their coordinate reference system if necessary.
In order to access the coordinate reference system (or projection) of a track table containing geographic data, you simply need to execute the following command:
## Coordinate Reference System:
## User input: +proj=longlat
## wkt:
## GEOGCRS["unknown",
## DATUM["World Geodetic System 1984",
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]],
## ID["EPSG",6326]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8901]],
## CS[ellipsoidal,2],
## AXIS["longitude",east,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433,
## ID["EPSG",9122]]],
## AXIS["latitude",north,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433,
## ID["EPSG",9122]]]]
This returns an object of class crs
which is a list
consisting of an input
object (usually the character string
that you have entered in track
under the proj
parameter), and a wkt
object which is an automatically
generated WKT
2 representation of the coordinate reference system.
You can modify in place the projection of a track table as follows. This will automatically convert the x and y coordinates contained in the track table to the appropriate projection system:
projection(tracks) <- "+proj=somerc +lat_0=46.9524056 +lon_0=7.43958333 +ellps=bessel +x_0=2600000 +y_0=1200000 +towgs84=674.374,15.056,405.346 +units=m +k_0=1 +no_defs"
print(tracks, max = 10 * ncol(tracks))
## Track table [7195 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=somerc +lat_0=46.9524056 +lon_0=7.43958333 +ellps=bessel +x_0=2600000 +y_0=1200000 +towgs84=674.374,15.056,405.346 +units=m +k_0=1 +no_defs
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 4927487 -9217299
## 2 1 2015-09-10 07:00:01 4927487 -9217299
## 3 1 2015-09-10 07:00:04 4927487 -9217301
## 4 1 2015-09-10 07:00:05 4927487 -9217302
## 5 1 2015-09-10 07:00:08 4927486 -9217304
## 6 1 2015-09-10 07:00:09 4927485 -9217305
## 7 1 2015-09-10 07:00:09 4927485 -9217305
## 8 1 2015-09-10 07:00:10 4927485 -9217306
## 9 1 2015-09-10 07:00:11 4927485 -9217306
## 10 1 2015-09-10 07:00:12 4927485 -9217306
## [ reached 'max' / getOption("max.print") -- omitted 7185 rows ]
And back to the original projection:
## Track table [7195 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=longlat
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 15.76468 -22.37957
## 2 1 2015-09-10 07:00:01 15.76468 -22.37957
## 3 1 2015-09-10 07:00:04 15.76468 -22.37958
## 4 1 2015-09-10 07:00:05 15.76468 -22.37958
## 5 1 2015-09-10 07:00:08 15.76467 -22.37959
## 6 1 2015-09-10 07:00:09 15.76467 -22.37959
## 7 1 2015-09-10 07:00:09 15.76467 -22.37959
## 8 1 2015-09-10 07:00:10 15.76466 -22.37959
## 9 1 2015-09-10 07:00:11 15.76466 -22.37959
## 10 1 2015-09-10 07:00:12 15.76466 -22.37959
## [ reached 'max' / getOption("max.print") -- omitted 7185 rows ]
If you prefer not to modify the original object, you can create a new
one with the new projection using theproject
function as
follows:
tracks_somerc <- project(tracks, "+proj=somerc +lat_0=46.9524056 +lon_0=7.43958333 +ellps=bessel +x_0=2600000 +y_0=1200000 +towgs84=674.374,15.056,405.346 +units=m +k_0=1 +no_defs")
print(tracks_somerc, max = 10 * ncol(tracks))
## Track table [7195 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=somerc +lat_0=46.9524056 +lon_0=7.43958333 +ellps=bessel +x_0=2600000 +y_0=1200000 +towgs84=674.374,15.056,405.346 +units=m +k_0=1 +no_defs
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 4927487 -9217299
## 2 1 2015-09-10 07:00:01 4927487 -9217299
## 3 1 2015-09-10 07:00:04 4927487 -9217301
## 4 1 2015-09-10 07:00:05 4927487 -9217302
## 5 1 2015-09-10 07:00:08 4927486 -9217304
## 6 1 2015-09-10 07:00:09 4927485 -9217305
## 7 1 2015-09-10 07:00:09 4927485 -9217305
## 8 1 2015-09-10 07:00:10 4927485 -9217306
## 9 1 2015-09-10 07:00:11 4927485 -9217306
## 10 1 2015-09-10 07:00:12 4927485 -9217306
## [ reached 'max' / getOption("max.print") -- omitted 7185 rows ]
Combining track tables requires a bit of caution. Indeed, traditional
methods to combine data frames (e.g., base::rbind
,
data.table::rbindlist
, or dplyr::bind_rows
)
will successfully bind together multiple track tables but they will not
check whether these track tables are compatible with each other. For
instance, they will not check that the coordinates are using the same
coordinate reference system or that the time stamps are all in the same
time zone.
In order to ensure that different track tables can be combined
without creating problems down the analysis pipeline,
trackdf
provides its own method to bind multiple track
tables together: bind_tracks
.
To demonstrate how bind_tracks
works, let’s first create
3 track tables, 2 that are compatible with each other, and 1 that is
not.
raw1 <- read.csv(system.file("extdata/gps/02.csv", package = "trackdf"))
raw2 <- read.csv(system.file("extdata/gps/03.csv", package = "trackdf"))
raw3 <- read.csv(system.file("extdata/video/01.csv", package = "trackdf"))
track1 <- track(x = raw1$lon, y = raw1$lat, t = paste(raw1$date, raw1$time),
id = 1, proj = "+proj=longlat", tz = "Africa/Windhoek")
track2 <- track(x = raw2$lon, y = raw2$lat, t = paste(raw2$date, raw2$time),
id = 2, proj = "+proj=longlat", tz = "Africa/Windhoek")
track3 <- track(x = raw3$x, y = raw3$y, t = raw3$frame, id = raw3$track_fixed,
origin = "2019-03-24 12:55:23", period = "0.04S",
tz = "America/New_York")
If you try to combine the 3 track tables using
bind_tracks
, an error will be thrown to let you know that
they are not compatible with each other:
## Error in bind_tracks(track1, track2, track3): All track tables should have the same projection.
Compare this to what happens with one of the traditional binding methods:
bounded_tracks <- rbind(track1, track2, track3)
print(bounded_tracks, max = 10 * ncol(bounded_tracks))
## Track table [29182 observations]
## Number of tracks: 81
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=longlat
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:00:00 15.76459 -22.37971
## 2 1 2015-09-10 07:00:01 15.76459 -22.37971
## 3 1 2015-09-10 07:00:02 15.76459 -22.37971
## 4 1 2015-09-10 07:00:03 15.76459 -22.37971
## 5 1 2015-09-10 07:00:04 15.76459 -22.37971
## 6 1 2015-09-10 07:00:05 15.76459 -22.37971
## 7 1 2015-09-10 07:00:06 15.76459 -22.37971
## 8 1 2015-09-10 07:00:07 15.76459 -22.37971
## 9 1 2015-09-10 07:00:08 15.76459 -22.37971
## 10 1 2015-09-10 07:00:09 15.76459 -22.37971
## [ reached 'max' / getOption("max.print") -- omitted 29172 rows ]
Here, the tracks tables are combined with each other despite having
different coordinate reference systems and time zones. Using
bind_tracks
instead ensures that this cannot happen.
Track tables are compatible with (most) of the functions from the “tidyverse”. For instance, you can
use all the dplyr
verbs to
filter, mutate, group, etc., a track table, in the same way you would do
with a tibble::tibble
or a base::data.frame
.
As long as the result of the operation that you are applying to a track
table does not affect its fundamental structure (see vignette “Building a track table”), the output that you
will get will remain a track table with its specific attributes.
For instance, here is how to filter a track table to keep only the observations between 2 specific time stamps:
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
filtered_tracks <- tracks %>%
filter(., t >= as.POSIXct("2015-09-10 07:01:00", tz = "Africa/Windhoek"),
t <= as.POSIXct("2015-09-10 07:11:00 CAT", tz = "Africa/Windhoek"))
print(filtered_tracks, max = 10 * ncol(filtered_tracks))
## Track table [1202 observations]
## Number of tracks: 2
## Dimensions: 2D
## Geographic: TRUE
## Projection: +proj=longlat
## Table class: data frame ('data.frame')
## id t x y
## 1 1 2015-09-10 07:01:00 15.76468 -22.37961
## 2 1 2015-09-10 07:01:01 15.76469 -22.37960
## 3 1 2015-09-10 07:01:02 15.76469 -22.37960
## 4 1 2015-09-10 07:01:03 15.76469 -22.37960
## 5 1 2015-09-10 07:01:04 15.76470 -22.37960
## 6 1 2015-09-10 07:01:05 15.76469 -22.37960
## 7 1 2015-09-10 07:01:06 15.76469 -22.37960
## 8 1 2015-09-10 07:01:07 15.76469 -22.37959
## 9 1 2015-09-10 07:01:08 15.76469 -22.37959
## 10 1 2015-09-10 07:01:09 15.76469 -22.37959
## [ reached 'max' / getOption("max.print") -- omitted 1192 rows ]
You can use any plotting method accepting a data frame of any class to represent the data in a track table.
Here is an example using ggplot2
:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.