The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# Install 'tna' package from CRAN if needed (uncomment if required).
# install.packages("tna")
# Load packages
library("tna")
# Load example data provided within the 'tna' package,
# representing group regulatory interactions
data(group_regulation)
# Run FTNA on 'group_regulation' data using raw counts of
# transitions ("absolute" type) and print the result
<- ftna(group_regulation)
model
# Print the output to inspect the model
print(model)
#> State Labels
#>
#> adapt, cohesion, consensus, coregulate, discuss, emotion, monitor, plan, synthesis
#>
#> Transition Frequency Matrix
#>
#> adapt cohesion consensus coregulate discuss emotion monitor plan
#> adapt 0 139 243 11 30 61 17 8
#> cohesion 5 46 844 202 101 196 56 239
#> consensus 30 94 519 1188 1190 460 295 2505
#> synthesis
#> adapt 0
#> cohesion 6
#> consensus 48
#> [ reached getOption("max.print") -- omitted 6 rows ]
#>
#> Initial Probabilities
#>
#> adapt cohesion consensus coregulate discuss emotion monitor
#> 0.011 0.060 0.214 0.019 0.175 0.151 0.144
#> plan synthesis
#> 0.204 0.019
# Calculate the Transition Network Analysis (TNA) on the group_regulation
# data with scaled weights between 0 and 1
<- ftna(group_regulation, scaling = "minmax")
model_scaled print(model_scaled) # Print the FTNA model with scaled weights
#> State Labels
#>
#> adapt, cohesion, consensus, coregulate, discuss, emotion, monitor, plan, synthesis
#>
#> Transition Frequency Matrix
#>
#> adapt cohesion consensus coregulate discuss emotion monitor plan
#> adapt 0.0000 0.0555 0.097 0.0044 0.012 0.024 0.0068 0.0032
#> cohesion 0.0020 0.0184 0.337 0.0806 0.040 0.078 0.0224 0.0954
#> consensus 0.0120 0.0375 0.207 0.4743 0.475 0.184 0.1178 1.0000
#> synthesis
#> adapt 0.0000
#> cohesion 0.0024
#> consensus 0.0192
#> [ reached getOption("max.print") -- omitted 6 rows ]
#>
#> Initial Probabilities
#>
#> adapt cohesion consensus coregulate discuss emotion monitor
#> 0.011 0.060 0.214 0.019 0.175 0.151 0.144
#> plan synthesis
#> 0.204 0.019
# Plotting the two weights together to see if the scaling distorts the data
# Combine weights from absolute and scaled models into a data frame for plotting
<- data.frame(
weights_data Absolute = as.vector(model$weights), # Extract absolute weights as a vector
Scaled = as.vector(model_scaled$weights) # Extract scaled weights as a vector
)<- cor(weights_data$Absolute, weights_data$Scaled, method = c("pearson")) |>
corr round(digits = 2)
# Create a scatter plot comparing absolute vs. scaled weights
<- ggplot(weights_data, aes(x = Absolute, y = Scaled)) +
plot_abs_scaled geom_point(color = "steelblue", alpha = 0.6, size = 2) + # Add points with specified aesthetics
geom_smooth(formula = y ~ x, method = "lm", color = "red", linetype = "dashed") + # Add a linear trend line
# geom_smooth(method = lm, formula = y ~ x, se = FALSE) +
geom_text(x = 0.1, y = 0.9, label = paste0('r = ', corr), color = 'red')
# stat_cor(aes(label = after_stat(r.label)), label.x = 0.1, label.y = 0.9,
# size = 4, color = "black", method = "spearman") + # Display Spearman correlation
labs(x = "Absolute Weights", y = "Scaled Weights") + # Label axes
theme_minimal() # Apply a minimal theme for the plot
#> NULL
# Display the scatter plot
plot_abs_scaled
# Calculate the Transition Network Analysis (TNA) on the `group_regulation`
# data with ranked weights
<- ftna(group_regulation, scaling = "rank")
model_ranked print(model_ranked) # Print the FTNA model with ranked weights
# Combine weights from absolute and ranked models into a data frame for plotting
<- data.frame(
weights_data Absolute = as.vector(model$weights), # Extract absolute weights as a vector
Ranked = as.vector(model_ranked$weights) # Extract ranked weights as a vector
)
# Create a scatter plot comparing Absolute vs. Ranked weights with correlation annotations
<- ggplot(weights_data, aes(x = Absolute, y = Ranked)) +
plot_abs_ranked geom_point(color = "steelblue", alpha = 0.6, size = 2) + # Add points with specified aesthetics
geom_smooth(formula = y ~ x, method = "lm", color = "red", linetype = "dashed") + # Add a linear trend line
# stat_cor(aes(label = paste("Spearman: ", round(after_stat(r), 2))),
# method = "spearman", label.x = 0.1, label.y = 0.9, size = 4, color = "black") + # Spearman correlation annotation
# stat_cor(aes(label = paste("Pearson: ", round(after_stat(r), 2))),
# method = "pearson", label.x = 0.1, label.y = 0.8, size = 4, color = "darkgreen") + # Pearson correlation annotation
labs(x = "Absolute Weights", y = "Ranked Weights") + # Label axes
theme_minimal() # Apply a minimal theme for the plot
# Display the scatter plot
plot_abs_ranked
layout(matrix(1:4, ncol = 2))
# Pruning with different methods
<- prune(model_scaled, method = "threshold", threshold = 0.1)
pruned_threshold <- prune(model_scaled, method = "lowest", lowest = 0.15)
pruned_lowest <- prune(model_scaled, method = "disparity", alpha = 0.5)
pruned_disparity
# Plotting for comparison
plot(pruned_threshold)
plot(pruned_lowest)
plot(pruned_disparity)
plot(model_scaled, minimum = 0.05, cut = 0.1)
# Identify 2-cliques (dyads) from the FTNA model with a weight threshold,
# excluding loops in visualization.
# A 2-clique represents a pair of nodes that are strongly connected based on
# the specified weight threshold.
layout(matrix(1:6, ncol = 3))
<- cliques(
cliques_of_two # The FTNA model with scaled edge weights
model_scaled, size = 2, # Looking for pairs of connected nodes (dyads)
threshold = 0.1 # Only include edges with weights greater than 0.1
)
# Print and visualize the identified 2-cliques (dyads)
print(cliques_of_two) # Display details of 2-cliques
#> Number of 2-cliques: 8 (weight threshold = 0.1)
#> Showing 6 cliques starting from clique number 1
#>
#> Clique 1:
#> consensus plan
#> consensus 0.21 1.00
#> plan 0.71 0.92
#>
#> Clique 2:
#> consensus discuss
#> consensus 0.21 0.48
#> discuss 0.51 0.31
#>
#> Clique 3:
#> discuss emotion
#> discuss 0.31 0.167
#> emotion 0.12 0.087
#>
#> Clique 4:
#> emotion plan
#> emotion 0.087 0.11
#> plan 0.361 0.92
#>
#> Clique 5:
#> consensus emotion
#> consensus 0.21 0.184
#> emotion 0.36 0.087
#>
#> Clique 6:
#> monitor plan
#> monitor 0.01 0.12
#> plan 0.19 0.92
plot(cliques_of_two, ask = F, vsize = 20) # Visualize 2-cliques in the network
layout(matrix(1:6, ncol = 3))
# Identify 3-cliques (triads) from the FTNA model.
# A 3-clique is a fully connected set of three nodes, indicating a strong
# triplet structure.
<- cliques(
cliques_of_three # The FTNA model with scaled edge weights
model_scaled, size = 3, # Looking for triplets of fully connected nodes (triads)
threshold = 0.05 # Only include edges with weights greater than 0.05
)
# Print and visualize the identified 3-cliques (triads)
# Uncomment the code below to view the results
print(cliques_of_three) # Display details of 3-cliques
#> Number of 3-cliques: 5 (weight threshold = 0.05)
#> Showing 5 cliques starting from clique number 1
#>
#> Clique 1:
#> consensus coregulate discuss
#> consensus 0.21 0.474 0.48
#> coregulate 0.11 0.018 0.22
#> discuss 0.51 0.133 0.31
#>
#> Clique 2:
#> consensus discuss emotion
#> consensus 0.21 0.48 0.184
#> discuss 0.51 0.31 0.167
#> emotion 0.36 0.12 0.087
#>
#> Clique 3:
#> consensus emotion plan
#> consensus 0.21 0.184 1.00
#> emotion 0.36 0.087 0.11
#> plan 0.71 0.361 0.92
#>
#> Clique 4:
#> consensus monitor plan
#> consensus 0.207 0.12 1.00
#> monitor 0.091 0.01 0.12
#> plan 0.714 0.19 0.92
#>
#> Clique 5:
#> cohesion emotion plan
#> cohesion 0.018 0.078 0.095
#> emotion 0.368 0.087 0.113
#> plan 0.062 0.361 0.920
plot(cliques_of_three, ask = F) # Visualize 3-cliques in the network
layout(matrix(1:6, ncol = 3))
# Identify 4-cliques (quadruples) from the FTNA model.
# A 4-clique includes four nodes where each node is connected to every other
# node in the group.
# Uncomment the code below to view the results
<- cliques(
cliques_of_four # The FTNA model with scaled edge weights
model_scaled, size = 4, # Looking for quadruples of fully connected nodes (4-cliques)
threshold = 0.03 # Only include edges with weights greater than 0.03
)
# Print and visualize the identified 4-cliques (quadruples)
# Uncomment the code below to view the results
print(cliques_of_four) # Display details of 4-cliques
#> Number of 4-cliques: 11 (weight threshold = 0.03)
#> Showing 6 cliques starting from clique number 1
#>
#> Clique 1:
#> consensus coregulate emotion plan
#> consensus 0.21 0.474 0.184 1.00
#> coregulate 0.11 0.018 0.135 0.19
#> emotion 0.36 0.039 0.087 0.11
#> plan 0.71 0.042 0.361 0.92
#>
#> Clique 2:
#> consensus coregulate discuss emotion
#> consensus 0.21 0.474 0.48 0.184
#> coregulate 0.11 0.018 0.22 0.135
#> discuss 0.51 0.133 0.31 0.167
#> emotion 0.36 0.039 0.12 0.087
#>
#> Clique 3:
#> coregulate discuss emotion monitor
#> coregulate 0.018 0.22 0.135 0.068
#> discuss 0.133 0.31 0.167 0.035
#> emotion 0.039 0.12 0.087 0.041
#> monitor 0.033 0.21 0.052 0.010
#>
#> Clique 4:
#> consensus coregulate discuss monitor
#> consensus 0.207 0.474 0.48 0.118
#> coregulate 0.106 0.018 0.22 0.068
#> discuss 0.507 0.133 0.31 0.035
#> monitor 0.091 0.033 0.21 0.010
#>
#> Clique 5:
#> consensus discuss emotion monitor
#> consensus 0.207 0.48 0.184 0.118
#> discuss 0.507 0.31 0.167 0.035
#> emotion 0.363 0.12 0.087 0.041
#> monitor 0.091 0.21 0.052 0.010
#>
#> Clique 6:
#> coregulate emotion monitor plan
#> coregulate 0.018 0.135 0.068 0.19
#> emotion 0.039 0.087 0.041 0.11
#> monitor 0.033 0.052 0.010 0.12
#> plan 0.042 0.361 0.186 0.92
plot(cliques_of_four, ask = F) # Visualize 4-cliques in the network
# Identify 5-cliques (quintuples) from the FTNA model, summing edge weights.
# Here, the sum of edge weights in both directions must meet the specified
# threshold for inclusion.
# Uncomment the code below to view the results
<- cliques(
cliques_of_five # The FTNA model with scaled edge weights
model_scaled, size = 5, # Looking for quintuples of fully connected nodes (5-cliques)
threshold = 0.1, # Only edges with total bidirectional weights greater than 0.1
sum_weights = TRUE # Sum edge weight in both directions when computing threshold
)
# Print and visualize the identified 5-cliques (quintuples)
print(cliques_of_five) # Display details of 5-cliques
#> Number of 5-cliques: 1 (weight threshold = 0.1)
#> Showing 1 cliques starting from clique number 1
#>
#> Clique 1:
#> consensus coregulate discuss emotion plan
#> consensus 0.21 0.474 0.48 0.184 1.000
#> coregulate 0.11 0.018 0.22 0.135 0.188
#> discuss 0.51 0.133 0.31 0.167 0.018
#> emotion 0.36 0.039 0.12 0.087 0.113
#> plan 0.71 0.042 0.17 0.361 0.920
plot(cliques_of_five, ask = F) # Visualize 5-cliques in the network
summary(model_scaled)
#> # A tibble: 13 × 2
#> metric value
#> * <chr> <dbl>
#> 1 Node Count 9
#> 2 Edge Count 78
#> 3 Network Density 1
#> 4 Mean Distance 0.0240
#> 5 Mean Out-Strength 1.13
#> 6 SD Out-Strength 0.886
#> 7 Mean In-Strength 1.13
#> 8 SD In-Strength 0.878
#> 9 Mean Out-Degree 8.67
#> 10 SD Out-Degree 0.707
#> 11 Centralization (Out-Degree) 0.0156
#> 12 Centralization (In-Degree) 0.0156
#> 13 Reciprocity 0.986
summary(pruned_disparity)
#> # A tibble: 13 × 2
#> metric value
#> * <chr> <dbl>
#> 1 Node Count 9
#> 2 Edge Count 39
#> 3 Network Density 0.542
#> 4 Mean Distance 0.188
#> 5 Mean Out-Strength 0.900
#> 6 SD Out-Strength 0.700
#> 7 Mean In-Strength 0.900
#> 8 SD In-Strength 0.673
#> 9 Mean Out-Degree 4.33
#> 10 SD Out-Degree 1.22
#> 11 Centralization (Out-Degree) 0.234
#> 12 Centralization (In-Degree) 0.516
#> 13 Reciprocity 0.615
# Compute centrality measures for the FTNA model
<- centralities(model_scaled)
centrality_measures
# Print the calculated centrality measures in the FTNA model
print(centrality_measures)
#> # A tibble: 9 × 10
#> state OutStrength InStrength ClosenessIn ClosenessOut Closeness Betweenness
#> * <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 adapt 0.203 0.212 14.6 5.83 21.6 20
#> 2 cohesion 0.658 0.667 6.61 6.54 18.7 0
#> 3 consensus 2.32 2.34 1.25 5.89 7.68 0
#> 4 coregulate 0.768 0.818 11.3 4.02 13.0 0
#> 5 discuss 1.27 1.26 7.22 3.30 7.68 0
#> 6 emotion 1.05 1.02 4.46 6.68 16.9 0
#> 7 monitor 0.562 0.480 10.8 5.24 13.0 7
#> 8 plan 1.54 1.56 11.6 5.88 16.8 9
#> 9 synthesis 0.260 0.275 12.0 5.72 16.9 21
#> # ℹ 3 more variables: BetweennessRSP <dbl>, Diffusion <dbl>, Clustering <dbl>
plot(centrality_measures)
# Convert the FTNA model to an igraph object and
# calculate HITS (Hub and Authority) scores
<- igraph::hits_scores(as.igraph(model_scaled))
hits_results
# Extract the hub and authority scores from the HITS results for further analysis
<- hits_results$hub
hub_scores <- hits_results$authority authority_scores
# Print the hub and authority scores to view influential nodes
print(hub_scores)
#> adapt cohesion consensus coregulate discuss emotion monitor
#> 0.056 0.240 0.955 0.256 0.377 0.305 0.189
#> plan synthesis
#> 1.000 0.074
print(authority_scores)
#> adapt cohesion consensus coregulate discuss emotion monitor
#> 0.033 0.129 0.672 0.293 0.437 0.344 0.174
#> plan synthesis
#> 1.000 0.056
<- betweenness_network(model_scaled)
edge_between plot(edge_between)
<- communities(model_scaled)
detected_communities plot(detected_communities, minimum = 0.05)
print(detected_communities)
#> Number of communities found by each algorithm:
#>
#> walktrap fast_greedy label_prop infomap
#> 1 3 1 1
#> edge_betweenness leading_eigen spinglass
#> 1 3 4
#>
#> Community assignments:
#>
#> state walktrap fast_greedy label_prop infomap edge_betweenness leading_eigen
#> 1 adapt 1 1 1 1 1 1
#> 2 cohesion 1 2 1 1 1 3
#> 3 consensus 1 3 1 1 1 2
#> spinglass
#> 1 2
#> 2 4
#> 3 1
#> [ reached 'max' / getOption("max.print") -- omitted 6 rows ]
# Perform bootstrapping on the FTNA model with a fixed seed for reproducibility
set.seed(265)
<- bootstrap(model_scaled, threshold = 0.05)
boot
# Print the combined results data frame containing
print(summary(boot))
#> from to weight p_value sig ci_lower ci_upper
#> 2 adapt cohesion 0.002 0.51 FALSE 0.0004 0.0036
#> 3 adapt consensus 0.012 0.16 FALSE 0.0078 0.0163
#> 4 adapt coregulate 0.013 0.16 FALSE 0.0085 0.0177
#> 5 adapt discuss 0.113 0.00 TRUE 0.0998 0.1269
#> [ reached 'max' / getOption("max.print") -- omitted 74 rows ]
# View non-significant edges which are less likely to be stable across bootstrap samples
print(boot, type = "nonsig")
#> Non-significant Edges
#>
#> from to weight p_value ci_lower ci_upper
#> 2 adapt cohesion 0.0020 0.51 0.00040 0.0036
#> 3 adapt consensus 0.0120 0.16 0.00782 0.0163
#> 4 adapt coregulate 0.0128 0.16 0.00850 0.0177
#> 6 adapt emotion 0.0028 0.56 0.00079 0.0049
#> 7 adapt monitor 0.0064 0.33 0.00355 0.0099
#> [ reached 'max' / getOption("max.print") -- omitted 23 rows ]
# Create FTNA for the high-achievers subset (rows 1 to 1000)
<- ftna(group_regulation[1:1000, ], scaling = "minmax")
Hi
# Create FTNA for the low-achievers subset (rows 1001 to 2000)
<- ftna(group_regulation[1001:2000, ], scaling = "minmax")
Lo
# Plot a comparison of the "Hi" and "Lo" models
# The 'minimum' parameter is set to 0.001, so edges with weights >= 0.001 are shown
plot_compare(Hi, Lo, minimum = 0.0001)
# Run a permutation test to determine statistical significance of
# differences between "Hi" and "Lo"
# The 'it' parameter is set to 1000, meaning 1000 permutations are performed
<- permutation_test(Hi, Lo, it = 1000)
Permutation
# Plot the significant differences identified in the permutation test
plot(Permutation, minimum = 0.01)
<- estimate_centrality_stability(model_scaled, detailed = FALSE, iter = 100)
Centrality_stability plot(Centrality_stability)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.