The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Frequency-based tna

FTNA tutorial

# Install 'tna' package from CRAN if needed (uncomment if required).
# install.packages("tna")

# Load packages
library("tna")

# Load example data provided within the 'tna' package, 
# representing group regulatory interactions
data(group_regulation)

# Run FTNA on 'group_regulation' data using raw counts of 
# transitions ("absolute" type) and print the result
model <- ftna(group_regulation)

# Print the output to inspect the model
print(model)
#> State Labels
#> 
#> adapt, cohesion, consensus, coregulate, discuss, emotion, monitor, plan, synthesis 
#> 
#> Transition Frequency Matrix
#> 
#>            adapt cohesion consensus coregulate discuss emotion monitor plan
#> adapt          0      139       243         11      30      61      17    8
#> cohesion       5       46       844        202     101     196      56  239
#> consensus     30       94       519       1188    1190     460     295 2505
#>            synthesis
#> adapt              0
#> cohesion           6
#> consensus         48
#>  [ reached getOption("max.print") -- omitted 6 rows ]
#> 
#> Initial Probabilities
#> 
#>      adapt   cohesion  consensus coregulate    discuss    emotion    monitor 
#>      0.011      0.060      0.214      0.019      0.175      0.151      0.144 
#>       plan  synthesis 
#>      0.204      0.019
# Calculate the Transition Network Analysis (TNA) on the group_regulation 
# data with scaled weights between 0 and 1
model_scaled <- ftna(group_regulation, scaling = "minmax")
print(model_scaled) # Print the FTNA model with scaled weights
#> State Labels
#> 
#> adapt, cohesion, consensus, coregulate, discuss, emotion, monitor, plan, synthesis 
#> 
#> Transition Frequency Matrix
#> 
#>             adapt cohesion consensus coregulate discuss emotion monitor   plan
#> adapt      0.0000   0.0555     0.097     0.0044   0.012   0.024  0.0068 0.0032
#> cohesion   0.0020   0.0184     0.337     0.0806   0.040   0.078  0.0224 0.0954
#> consensus  0.0120   0.0375     0.207     0.4743   0.475   0.184  0.1178 1.0000
#>            synthesis
#> adapt         0.0000
#> cohesion      0.0024
#> consensus     0.0192
#>  [ reached getOption("max.print") -- omitted 6 rows ]
#> 
#> Initial Probabilities
#> 
#>      adapt   cohesion  consensus coregulate    discuss    emotion    monitor 
#>      0.011      0.060      0.214      0.019      0.175      0.151      0.144 
#>       plan  synthesis 
#>      0.204      0.019

Plotting

# Plotting the two weights together to see if the scaling distorts the data

# Combine weights from absolute and scaled models into a data frame for plotting
weights_data <- data.frame(
  Absolute = as.vector(model$weights), # Extract absolute weights as a vector
  Scaled = as.vector(model_scaled$weights) # Extract scaled weights as a vector
)
corr <- cor(weights_data$Absolute, weights_data$Scaled, method = c("pearson")) |>
  round(digits = 2)

# Create a scatter plot comparing absolute vs. scaled weights
plot_abs_scaled <- ggplot(weights_data, aes(x = Absolute, y = Scaled)) +
  geom_point(color = "steelblue", alpha = 0.6, size = 2) +  # Add points with specified aesthetics
  geom_smooth(formula = y ~ x, method = "lm", color = "red", linetype = "dashed") + # Add a linear trend line
  # geom_smooth(method = lm, formula = y ~ x, se = FALSE) +
  geom_text(x = 0.1, y = 0.9, label = paste0('r = ', corr), color = 'red')
  # stat_cor(aes(label = after_stat(r.label)), label.x = 0.1, label.y = 0.9, 
  #          size = 4, color = "black", method = "spearman") + # Display Spearman correlation
  labs(x = "Absolute Weights", y = "Scaled Weights") + # Label axes
  theme_minimal() # Apply a minimal theme for the plot
#> NULL

# Display the scatter plot
plot_abs_scaled

# Calculate the Transition Network Analysis (TNA) on the `group_regulation` 
# data with ranked weights
model_ranked <- ftna(group_regulation, scaling = "rank")
print(model_ranked) # Print the FTNA model with ranked weights
# Combine weights from absolute and ranked models into a data frame for plotting
weights_data <- data.frame(
  Absolute = as.vector(model$weights), # Extract absolute weights as a vector
  Ranked = as.vector(model_ranked$weights) # Extract ranked weights as a vector
)

# Create a scatter plot comparing Absolute vs. Ranked weights with correlation annotations
plot_abs_ranked <- ggplot(weights_data, aes(x = Absolute, y = Ranked)) +
  geom_point(color = "steelblue", alpha = 0.6, size = 2) +  # Add points with specified aesthetics
  geom_smooth(formula = y ~ x, method = "lm", color = "red", linetype = "dashed") +  # Add a linear trend line
  # stat_cor(aes(label = paste("Spearman: ", round(after_stat(r), 2))), 
  #          method = "spearman", label.x = 0.1, label.y = 0.9, size = 4, color = "black") + # Spearman correlation annotation
  # stat_cor(aes(label = paste("Pearson: ", round(after_stat(r), 2))), 
  #          method = "pearson", label.x = 0.1, label.y = 0.8, size = 4, color = "darkgreen") + # Pearson correlation annotation
  labs(x = "Absolute Weights", y = "Ranked Weights") + # Label axes
  theme_minimal() # Apply a minimal theme for the plot

# Display the scatter plot
plot_abs_ranked

Pruning

layout(matrix(1:4, ncol = 2))
# Pruning with different methods
pruned_threshold <- prune(model_scaled, method = "threshold", threshold = 0.1)
pruned_lowest <- prune(model_scaled, method = "lowest", lowest = 0.15)
pruned_disparity <- prune(model_scaled, method = "disparity", alpha = 0.5)

# Plotting for comparison
plot(pruned_threshold)
plot(pruned_lowest)
plot(pruned_disparity)
plot(model_scaled, minimum = 0.05, cut = 0.1)

Patterns

# Identify 2-cliques (dyads) from the FTNA model with a weight threshold, 
# excluding loops in visualization.
# A 2-clique represents a pair of nodes that are strongly connected based on 
# the specified weight threshold.
layout(matrix(1:6, ncol = 3))
cliques_of_two <- cliques(
  model_scaled,      # The FTNA model with scaled edge weights
  size = 2,          # Looking for pairs of connected nodes (dyads)
  threshold = 0.1    # Only include edges with weights greater than 0.1
)

# Print and visualize the identified 2-cliques (dyads)
print(cliques_of_two)  # Display details of 2-cliques
#> Number of 2-cliques: 8 (weight threshold = 0.1)
#> Showing 6 cliques starting from clique number 1
#> 
#> Clique 1:
#>           consensus plan
#> consensus      0.21 1.00
#> plan           0.71 0.92
#> 
#> Clique 2:
#>           consensus discuss
#> consensus      0.21    0.48
#> discuss        0.51    0.31
#> 
#> Clique 3:
#>         discuss emotion
#> discuss    0.31   0.167
#> emotion    0.12   0.087
#> 
#> Clique 4:
#>         emotion plan
#> emotion   0.087 0.11
#> plan      0.361 0.92
#> 
#> Clique 5:
#>           consensus emotion
#> consensus      0.21   0.184
#> emotion        0.36   0.087
#> 
#> Clique 6:
#>         monitor plan
#> monitor    0.01 0.12
#> plan       0.19 0.92
plot(cliques_of_two, ask = F, vsize = 20)   # Visualize 2-cliques in the network

layout(matrix(1:6, ncol = 3))
# Identify 3-cliques (triads) from the FTNA model.
# A 3-clique is a fully connected set of three nodes, indicating a strong 
# triplet structure.
cliques_of_three <- cliques(
  model_scaled,      # The FTNA model with scaled edge weights
  size = 3,          # Looking for triplets of fully connected nodes (triads)
  threshold = 0.05   # Only include edges with weights greater than 0.05
)

# Print and visualize the identified 3-cliques (triads)
# Uncomment the code below to view the results
print(cliques_of_three) # Display details of 3-cliques
#> Number of 3-cliques: 5 (weight threshold = 0.05)
#> Showing 5 cliques starting from clique number 1
#> 
#> Clique 1:
#>            consensus coregulate discuss
#> consensus       0.21      0.474    0.48
#> coregulate      0.11      0.018    0.22
#> discuss         0.51      0.133    0.31
#> 
#> Clique 2:
#>           consensus discuss emotion
#> consensus      0.21    0.48   0.184
#> discuss        0.51    0.31   0.167
#> emotion        0.36    0.12   0.087
#> 
#> Clique 3:
#>           consensus emotion plan
#> consensus      0.21   0.184 1.00
#> emotion        0.36   0.087 0.11
#> plan           0.71   0.361 0.92
#> 
#> Clique 4:
#>           consensus monitor plan
#> consensus     0.207    0.12 1.00
#> monitor       0.091    0.01 0.12
#> plan          0.714    0.19 0.92
#> 
#> Clique 5:
#>          cohesion emotion  plan
#> cohesion    0.018   0.078 0.095
#> emotion     0.368   0.087 0.113
#> plan        0.062   0.361 0.920
plot(cliques_of_three, ask = F)  # Visualize 3-cliques in the network

layout(matrix(1:6, ncol = 3))
# Identify 4-cliques (quadruples) from the FTNA model.
# A 4-clique includes four nodes where each node is connected to every other 
# node in the group.
# Uncomment the code below to view the results
cliques_of_four <- cliques(
  model_scaled,      # The FTNA model with scaled edge weights
  size = 4,          # Looking for quadruples of fully connected nodes (4-cliques)
  threshold = 0.03   # Only include edges with weights greater than 0.03
)

# Print and visualize the identified 4-cliques (quadruples) 
# Uncomment the code below to view the results
print(cliques_of_four)  # Display details of 4-cliques
#> Number of 4-cliques: 11 (weight threshold = 0.03)
#> Showing 6 cliques starting from clique number 1
#> 
#> Clique 1:
#>            consensus coregulate emotion plan
#> consensus       0.21      0.474   0.184 1.00
#> coregulate      0.11      0.018   0.135 0.19
#> emotion         0.36      0.039   0.087 0.11
#> plan            0.71      0.042   0.361 0.92
#> 
#> Clique 2:
#>            consensus coregulate discuss emotion
#> consensus       0.21      0.474    0.48   0.184
#> coregulate      0.11      0.018    0.22   0.135
#> discuss         0.51      0.133    0.31   0.167
#> emotion         0.36      0.039    0.12   0.087
#> 
#> Clique 3:
#>            coregulate discuss emotion monitor
#> coregulate      0.018    0.22   0.135   0.068
#> discuss         0.133    0.31   0.167   0.035
#> emotion         0.039    0.12   0.087   0.041
#> monitor         0.033    0.21   0.052   0.010
#> 
#> Clique 4:
#>            consensus coregulate discuss monitor
#> consensus      0.207      0.474    0.48   0.118
#> coregulate     0.106      0.018    0.22   0.068
#> discuss        0.507      0.133    0.31   0.035
#> monitor        0.091      0.033    0.21   0.010
#> 
#> Clique 5:
#>           consensus discuss emotion monitor
#> consensus     0.207    0.48   0.184   0.118
#> discuss       0.507    0.31   0.167   0.035
#> emotion       0.363    0.12   0.087   0.041
#> monitor       0.091    0.21   0.052   0.010
#> 
#> Clique 6:
#>            coregulate emotion monitor plan
#> coregulate      0.018   0.135   0.068 0.19
#> emotion         0.039   0.087   0.041 0.11
#> monitor         0.033   0.052   0.010 0.12
#> plan            0.042   0.361   0.186 0.92
plot(cliques_of_four, ask = F)   # Visualize 4-cliques in the network

# Identify 5-cliques (quintuples) from the FTNA model, summing edge weights.
# Here, the sum of edge weights in both directions must meet the specified 
# threshold for inclusion.
# Uncomment the code below to view the results
cliques_of_five <- cliques(
  model_scaled,      # The FTNA model with scaled edge weights
  size = 5,          # Looking for quintuples of fully connected nodes (5-cliques)
  threshold = 0.1,   # Only edges with total bidirectional weights greater than 0.1
  sum_weights = TRUE # Sum edge weight in both directions when computing  threshold
)

# Print and visualize the identified 5-cliques (quintuples)
print(cliques_of_five)  # Display details of 5-cliques
#> Number of 5-cliques: 1 (weight threshold = 0.1)
#> Showing 1 cliques starting from clique number 1
#> 
#> Clique 1:
#>            consensus coregulate discuss emotion  plan
#> consensus       0.21      0.474    0.48   0.184 1.000
#> coregulate      0.11      0.018    0.22   0.135 0.188
#> discuss         0.51      0.133    0.31   0.167 0.018
#> emotion         0.36      0.039    0.12   0.087 0.113
#> plan            0.71      0.042    0.17   0.361 0.920
plot(cliques_of_five, ask = F)   # Visualize 5-cliques in the network

Graph level measures

summary(model_scaled)
#> # A tibble: 13 × 2
#>    metric                        value
#>  * <chr>                         <dbl>
#>  1 Node Count                   9     
#>  2 Edge Count                  78     
#>  3 Network Density              1     
#>  4 Mean Distance                0.0240
#>  5 Mean Out-Strength            1.13  
#>  6 SD Out-Strength              0.886 
#>  7 Mean In-Strength             1.13  
#>  8 SD In-Strength               0.878 
#>  9 Mean Out-Degree              8.67  
#> 10 SD Out-Degree                0.707 
#> 11 Centralization (Out-Degree)  0.0156
#> 12 Centralization (In-Degree)   0.0156
#> 13 Reciprocity                  0.986
summary(pruned_disparity)
#> # A tibble: 13 × 2
#>    metric                       value
#>  * <chr>                        <dbl>
#>  1 Node Count                   9    
#>  2 Edge Count                  39    
#>  3 Network Density              0.542
#>  4 Mean Distance                0.188
#>  5 Mean Out-Strength            0.900
#>  6 SD Out-Strength              0.700
#>  7 Mean In-Strength             0.900
#>  8 SD In-Strength               0.673
#>  9 Mean Out-Degree              4.33 
#> 10 SD Out-Degree                1.22 
#> 11 Centralization (Out-Degree)  0.234
#> 12 Centralization (In-Degree)   0.516
#> 13 Reciprocity                  0.615

Node level measures

# Compute centrality measures for the FTNA model
centrality_measures <- centralities(model_scaled)

# Print the calculated centrality measures in the FTNA model
print(centrality_measures)
#> # A tibble: 9 × 10
#>   state      OutStrength InStrength ClosenessIn ClosenessOut Closeness Betweenness
#> * <fct>            <dbl>      <dbl>       <dbl>        <dbl>     <dbl>       <dbl>
#> 1 adapt            0.203      0.212       14.6          5.83     21.6           20
#> 2 cohesion         0.658      0.667        6.61         6.54     18.7            0
#> 3 consensus        2.32       2.34         1.25         5.89      7.68           0
#> 4 coregulate       0.768      0.818       11.3          4.02     13.0            0
#> 5 discuss          1.27       1.26         7.22         3.30      7.68           0
#> 6 emotion          1.05       1.02         4.46         6.68     16.9            0
#> 7 monitor          0.562      0.480       10.8          5.24     13.0            7
#> 8 plan             1.54       1.56        11.6          5.88     16.8            9
#> 9 synthesis        0.260      0.275       12.0          5.72     16.9           21
#> # ℹ 3 more variables: BetweennessRSP <dbl>, Diffusion <dbl>, Clustering <dbl>
plot(centrality_measures)

# Convert the FTNA model to an igraph object and 
# calculate HITS (Hub and Authority) scores
hits_results <- igraph::hits_scores(as.igraph(model_scaled))

# Extract the hub and authority scores from the HITS results for further analysis
hub_scores <- hits_results$hub
authority_scores <- hits_results$authority
# Print the hub and authority scores to view influential nodes
print(hub_scores)
#>      adapt   cohesion  consensus coregulate    discuss    emotion    monitor 
#>      0.056      0.240      0.955      0.256      0.377      0.305      0.189 
#>       plan  synthesis 
#>      1.000      0.074
print(authority_scores)
#>      adapt   cohesion  consensus coregulate    discuss    emotion    monitor 
#>      0.033      0.129      0.672      0.293      0.437      0.344      0.174 
#>       plan  synthesis 
#>      1.000      0.056

Edge level measures

edge_between <- betweenness_network(model_scaled)
plot(edge_between)

Community detection

detected_communities <- communities(model_scaled)
plot(detected_communities, minimum = 0.05)

print(detected_communities)
#> Number of communities found by each algorithm:
#> 
#>         walktrap      fast_greedy       label_prop          infomap 
#>                1                3                1                1 
#> edge_betweenness    leading_eigen        spinglass 
#>                1                3                4 
#> 
#> Community assignments:
#> 
#>       state walktrap fast_greedy label_prop infomap edge_betweenness leading_eigen
#> 1     adapt        1           1          1       1                1             1
#> 2  cohesion        1           2          1       1                1             3
#> 3 consensus        1           3          1       1                1             2
#>   spinglass
#> 1         2
#> 2         4
#> 3         1
#>  [ reached 'max' / getOption("max.print") -- omitted 6 rows ]

Bootstrapping

# Perform bootstrapping on the FTNA model with a fixed seed for reproducibility
set.seed(265)
boot <- bootstrap(model_scaled, threshold = 0.05)

# Print the combined results data frame containing
print(summary(boot))
#>    from         to weight p_value   sig ci_lower ci_upper
#> 2 adapt   cohesion  0.002    0.51 FALSE   0.0004   0.0036
#> 3 adapt  consensus  0.012    0.16 FALSE   0.0078   0.0163
#> 4 adapt coregulate  0.013    0.16 FALSE   0.0085   0.0177
#> 5 adapt    discuss  0.113    0.00  TRUE   0.0998   0.1269
#>  [ reached 'max' / getOption("max.print") -- omitted 74 rows ]

# View non-significant edges  which are less likely to be stable across bootstrap samples
print(boot, type = "nonsig")
#> Non-significant Edges
#> 
#>    from         to weight p_value ci_lower ci_upper
#> 2 adapt   cohesion 0.0020    0.51  0.00040   0.0036
#> 3 adapt  consensus 0.0120    0.16  0.00782   0.0163
#> 4 adapt coregulate 0.0128    0.16  0.00850   0.0177
#> 6 adapt    emotion 0.0028    0.56  0.00079   0.0049
#> 7 adapt    monitor 0.0064    0.33  0.00355   0.0099
#>  [ reached 'max' / getOption("max.print") -- omitted 23 rows ]

Comparing Models

# Create FTNA for the high-achievers subset (rows 1 to 1000)
Hi <- ftna(group_regulation[1:1000, ], scaling = "minmax")

# Create FTNA for the low-achievers subset (rows 1001 to 2000)
Lo <- ftna(group_regulation[1001:2000, ], scaling = "minmax")

# Plot a comparison of the "Hi" and "Lo" models
# The 'minimum' parameter is set to 0.001, so edges with weights >= 0.001 are shown
plot_compare(Hi, Lo, minimum = 0.0001)


# Run a permutation test to determine statistical significance of 
# differences between "Hi" and "Lo"
# The 'it' parameter is set to 1000, meaning 1000 permutations are performed
Permutation <- permutation_test(Hi, Lo, it = 1000)

# Plot the significant differences identified in the permutation test
plot(Permutation, minimum = 0.01)

Centrality stability

Centrality_stability <- estimate_centrality_stability(model_scaled, detailed = FALSE, iter = 100)
plot(Centrality_stability)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.