The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Comparison with mgcv

James T. Thorson

library(tinyVAST)
library(pdp)  # approx = TRUE gives effects for average of other covariates
library(lattice)
library(visreg)
library(mgcv)
set.seed(101)
options("tinyVAST.verbose" = FALSE)

tinyVAST is an R package for fitting vector autoregressive spatio-temporal (VAST) models using a minimal and user-friendly interface. We here show how it can replicate analysis using splines specified via mgcv

# Simulate
n_obs = 1000
x = rnorm(n_obs)
group = sample( x=1:5, size=n_obs, replace=TRUE )
w = runif(n_obs, min=0, max=2)
z = 1 + x^2 + cos((w+group/5)*2*pi) + rnorm(5)[group]
a = exp(0.1*rnorm(n_obs))
y = z + a + rnorm(n_obs, sd=0.2)
Data = data.frame( x=x, y=y, w=w, z=z, group=factor(group), a=a )

# fit model
Formula = y ~ 1 + s(group, bs="re") + poly(x, 2, raw=TRUE) + s(w, by=group, bs="ts") # + offset(a)
myfit = tinyVAST( data = Data,
           formula = Formula,
           control = tinyVASTcontrol( getsd=FALSE ) )

We can then compute the percent deviance explained, and confirm that it is identical to that calculated using mgcv

# By default
myfit$deviance_explained
#> [1] 0.9814343

#
mygam_reduced = gam( Formula, data=Data ) #
summary(mygam_reduced)$dev.expl
#> [1] 0.9814113

We can also use the DHARMa package to visualize simulation residuals:

# simulate new data conditional on fixed and random effects
y_ir = replicate( n = 100, 
           expr = myfit$obj$simulate()$y_i )

#
res = DHARMa::createDHARMa( simulatedResponse = y_ir, 
                            observedResponse = Data$y, 
                            fittedPredictedResponse = fitted(myfit) )
plot(res)

tinyVAST then has a standard predict function:

predict(myfit, newdata=data.frame(x=0, y=1, w=0.4, group=2, a=1) )
#> [1] 2.977754

and this is used to compute partial-dependence plots using package pdp

# compute partial dependence plot
Partial = partial( object = myfit,
                   pred.var = c("w","group"),
                   pred.fun = \(object,newdata) predict(object,newdata),
                   train = Data,
                   approx = TRUE )

# Lattice plots as default option
plotPartial( Partial )

Alternatively, we can use visreg to visualize output, although it is disabled for CRAN vignette checks:

visreg(myfit, xvar="group", what="p_g")
#> Warning in plot.window(...): "what" is not a graphical parameter
#> Warning in plot.xy(xy, type, ...): "what" is not a graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "what" is not a
#> graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "what" is not a
#> graphical parameter
#> Warning in box(...): "what" is not a graphical parameter
#> Warning in title(...): "what" is not a graphical parameter
#> Warning in axis(side = 1, at = c(0.0833333333333333, 0.291666666666667, :
#> "what" is not a graphical parameter

visreg(myfit, xvar="x", what="p_g")
#> Warning in plot.window(...): "what" is not a graphical parameter
#> Warning in plot.xy(xy, type, ...): "what" is not a graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "what" is not a
#> graphical parameter
#> Warning in axis(side = side, at = at, labels = labels, ...): "what" is not a
#> graphical parameter
#> Warning in box(...): "what" is not a graphical parameter
#> Warning in title(...): "what" is not a graphical parameter

visreg(myfit, xvar="w", by="group", what="p_g")

Alternatively, we can calculate derived quantities via Monte Carlo integration of the estimated density function:

# Predicted sample-weighted total
integrate_output(myfit)
#>            Estimate          Std. Error Est. (bias.correct) Std. (bias.correct) 
#>         2616.538079            7.187831         2616.538079                  NA

# True (latent) sample-weighted total
sum( Data$z )
#> [1] 1606.42

Similarly, we can fit a grouped 2D spline

# Simulate
R = exp(-0.4 * abs(outer(1:10, 1:10, FUN="-")) )
z = mvtnorm::rmvnorm(3, sigma=kronecker(R,R) )
Data = data.frame( expand.grid(x=1:10, y=1:10, group=1:3), z=as.vector(t(z)))
Data$n = Data$z + rnorm(nrow(Data), sd=0.1)
Data$group = factor(Data$group)

# fit model
Formula = n ~ s(x, y, by=group)
myfit = tinyVAST( data = Data,
           formula = Formula )

# compute partial dependence plot
mypartial = partial( object = myfit,
                   pred.var = c("x","y","group"),
                   pred.fun = \(object,newdata) predict(object,newdata),
                   train = Data,
                   approx = TRUE )

# Lattice plots as default option
plotPartial( mypartial )


# Lattice plot of true values
mypartial$yhat = Data$z
plotPartial( mypartial )

We can again use visreg to visualize response surfaces, although it doesn’t seem possible to extract a grouped spatial term, so we here show only a single term:

out = visreg2d( myfit, "x", "y", cond=list("group"=1), plot=FALSE )
plot( out, main="f(x,y) for group=1")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.