The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Dynamic structural equation models

James T. Thorson

library(tinyVAST)
set.seed(101)
options("tinyVAST.verbose" = FALSE)

tinyVAST includes features to fit a dynamic structural equation model. We here show this using a bivariate vector autoregressive model for wolf and moose abundance on Isle Royale.

data(isle_royale, package="dsem")

# Convert to long-form
data = expand.grid( "time"=isle_royale[,1], "var"=colnames(isle_royale[,2:3]) )
data$logn = unlist(log(isle_royale[2:3]))

# Define cross-lagged DSEM
dsem = "
  # Link, lag, param_name
  wolves -> wolves, 1, arW
  moose -> wolves, 1, MtoW
  wolves -> moose, 1, WtoM
  moose -> moose, 1, arM
  #wolves -> moose, 0, corr
  wolves <-> moose, 0, corr
"

# fit model
mytiny = tinyVAST( spacetime_term = dsem,
                 data = data,
                 times = isle_royale[,1],
                 variables = colnames(isle_royale[,2:3]),
                 formula = logn ~ 0 + var )
mytiny
#> Call: 
#> tinyVAST(formula = logn ~ 0 + var, data = data, spacetime_term = dsem, 
#>     times = isle_royale[, 1], variables = colnames(isle_royale[, 
#>         2:3]))
#> 
#> Run time: 
#> Time difference of 0.3489952 secs
#> 
#> Family: 
#> $obs
#> 
#> Family: gaussian 
#> Link function: identity 
#> 
#> 
#> 
#> 
#> sdreport(.) result
#>               Estimate   Std. Error
#> alpha_j     3.32526197 2.483494e-01
#> alpha_j     6.44165343 2.116035e-01
#> beta_z      0.89304266 8.420632e-02
#> beta_z      0.01420908 1.279150e-01
#> beta_z     -0.13239996 3.454997e-02
#> beta_z      0.86147627 7.107386e-02
#> beta_z     -0.01285890 5.063467e-02
#> beta_z      0.37727131 3.504314e-02
#> beta_z      0.17062266 1.584742e-02
#> log_sigma -12.62352160 2.012258e+04
#> Maximum gradient component: 3.60018e-05 
#> 
#> Proportion conditional deviance explained: 
#> [1] 1
#> 
#> spacetime_term: 
#>   heads     to   from parameter start lag    Estimate  Std_Error    z_value
#> 1     1 wolves wolves         1  <NA>   1  0.89304266 0.08420632 10.6054118
#> 2     1 wolves  moose         2  <NA>   1  0.01420908 0.12791496  0.1110823
#> 3     1  moose wolves         3  <NA>   1 -0.13239996 0.03454997 -3.8321293
#> 4     1  moose  moose         4  <NA>   1  0.86147627 0.07107386 12.1208601
#> 5     2  moose wolves         5  <NA>   0 -0.01285890 0.05063467 -0.2539545
#> 6     2 wolves wolves         6  <NA>   0  0.37727131 0.03504314 10.7659099
#> 7     2  moose  moose         7  <NA>   0  0.17062266 0.01584742 10.7665881
#>        p_value
#> 1 2.812223e-26
#> 2 9.115511e-01
#> 3 1.270389e-04
#> 4 8.189516e-34
#> 5 7.995307e-01
#> 6 4.986648e-27
#> 7 4.950067e-27
#> 
#> Fixed terms: 
#>           Estimate Std_Error  z_value       p_value
#> varwolves 3.325262 0.2483494 13.38945  6.969636e-41
#> varmoose  6.441653 0.2116035 30.44210 1.524034e-203

# Deviance explained relative to both intercepts
# Note that a process-error-only estimate with have devexpl -> 1
deviance_explained( mytiny, 
                    null_formula = logn ~ 0 + var )
#> [1] 1

# See summary
knitr::kable( summary(mytiny,"spacetime_term"), digits=3 )
heads to from parameter start lag Estimate Std_Error z_value p_value
1 wolves wolves 1 NA 1 0.893 0.084 10.605 0.000
1 wolves moose 2 NA 1 0.014 0.128 0.111 0.912
1 moose wolves 3 NA 1 -0.132 0.035 -3.832 0.000
1 moose moose 4 NA 1 0.861 0.071 12.121 0.000
2 moose wolves 5 NA 0 -0.013 0.051 -0.254 0.800
2 wolves wolves 6 NA 0 0.377 0.035 10.766 0.000
2 moose moose 7 NA 0 0.171 0.016 10.767 0.000

And we can specifically inspect the estimated interaction matrix:

wolves moose
wolves 0.893 -0.132
moose 0.014 0.861

We can then compare this with package dsem

library(dsem)

# Keep in wide-form
dsem_data = ts( log(isle_royale[,2:3]), start=1959)
family = c("normal","normal")

# fit without delta0
# SEs aren't available because measurement errors goes to zero
mydsem = dsem::dsem( sem = dsem,
             tsdata = dsem_data,
             control = dsem_control(getsd=FALSE),
             family = family )
#>   Coefficient_name Number_of_coefficients   Type
#> 1           beta_z                      7  Fixed
#> 2        lnsigma_j                      2  Fixed
#> 3             mu_j                      2 Random
#> 4             x_tj                    122 Random
mydsem
#> $par
#>        beta_z        beta_z        beta_z        beta_z        beta_z 
#>   0.895834720   0.007358847  -0.124879928   0.874884847  -0.014394603 
#>        beta_z        beta_z     lnsigma_j     lnsigma_j 
#>   0.378522244   0.172997994 -17.248978101 -12.636038113 
#> 
#> $objective
#> [1] 7.739638
#> attr(,"logarithm")
#> [1] TRUE
#> 
#> $convergence
#> [1] 0
#> 
#> $iterations
#> [1] 74
#> 
#> $evaluations
#> function gradient 
#>       96       75 
#> 
#> $message
#> [1] "relative convergence (4)"

# See summary
knitr::kable( summary(mydsem), digits=3 )
path lag name start parameter first second direction Estimate
wolves -> wolves 1 arW NA 1 wolves wolves 1 0.896
moose -> wolves 1 MtoW NA 2 moose wolves 1 0.007
wolves -> moose 1 WtoM NA 3 wolves moose 1 -0.125
moose -> moose 1 arM NA 4 moose moose 1 0.875
wolves <-> moose 0 corr NA 5 wolves moose 2 -0.014
wolves <-> wolves 0 V[wolves] NA 6 wolves wolves 2 0.379
moose <-> moose 0 V[moose] NA 7 moose moose 2 0.173

where we again inspect the estimated interaction matrix:

wolves moose
wolves 0.896 -0.125
moose 0.007 0.875

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.