The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Code for producing the figures in the article

Stefano Mangiola

2024-01-10

Lifecycle:maturing

# Article workflow

library(tidyverse)
library(Seurat)
library(SingleR)
library(plotly)
library(tidyHeatmap)
library(ggalluvial)
library(ggplot2)
library(tidyseurat)
options(future.globals.maxSize = 50068 * 1024^2)

# Use colourblind-friendly colours
friendly_cols <- dittoSeq::dittoColors()

# Set theme
custom_theme <-
  list(
    scale_fill_manual(values = friendly_cols),
    scale_color_manual(values = friendly_cols),
    theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 9),
        legend.position = "bottom",
        strip.background = element_blank(),
        axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
        axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )
  )

PBMC_clean_scaled_UMAP_cluster_cell_type <- readRDS("dev/PBMC_clean_scaled_UMAP_cluster_cell_type.rds")
p1 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  pivot_longer(
    c(mito.fraction, S.Score, G2M.Score), 
    names_to="property", 
    values_to="Value"
  ) %>%
  mutate(property =  factor(property, levels = c("mito.fraction", "G2M.Score", "S.Score"))) %>%
  ggplot(aes(sample, Value)) + 
  geom_boxplot(outlier.size = 0.5 ) + 
  facet_wrap(~property, scales = "free_y" ) +
  custom_theme +
  theme(aspect.ratio=1)
p2 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  sample_n(20000) %>%
  ggplot(aes(UMAP_1, UMAP_2, color=seurat_clusters)) +
  geom_point(size=0.05, alpha=0.2) +
  custom_theme +
  theme(aspect.ratio=1)

PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  sample_n(20000) %>%
  plot_ly(
    x = ~`UMAP_1`,
    y = ~`UMAP_2`,
    z = ~`UMAP_3`,
    color = ~seurat_clusters,
    colors = friendly_cols[1:24],sizes = 50, size = 1
  )

markers = readRDS("dev/PBMC_marker_df.rds")
p3 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  arrange(first.labels) %>%
  mutate(seurat_clusters = fct_inorder(seurat_clusters)) %>%
  join_features(features=c("CD3D", "HLA-DRB1")) %>%
  ggplot(aes(y=seurat_clusters , x=.abundance_SCT, fill=first.labels)) +
  geom_density_ridges(bandwidth = 0.2) +
  facet_wrap(~ .feature, nrow = 2) +
  coord_flip() +
  custom_theme
# Plot heatmap
p4 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  sample_n(2000) %>%
  DoHeatmap(
    features = markers$gene,
    group.colors = friendly_cols
  )
p5 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  sample_n(1000) %>%
  join_features(features=markers$gene) %>%
  mutate(seurat_clusters = as.integer(seurat_clusters)) %>%
  filter(seurat_clusters<10) %>%
  group_by(seurat_clusters) %>%
  
  # Plot heatmap
  heatmap(
    .row = .feature,
    .column = .cell, 
    .value = .abundance_SCT, 
    palette_grouping = list(rep("black",9)), 
    palette_value = circlize::colorRamp2(c(-1.5, 0, 1.5), c("purple", "black", "yellow")),
    
    # ComplexHeatmap parameters
    row_gap = unit(0.1, "mm"), column_gap = unit(0.1, "mm")
  ) %>%
    
  # Add annotation
  add_tile(sample, palette = friendly_cols[1:7]) %>%
  add_point(PC_1) 
p6 = 
  PBMC_clean_scaled_UMAP_cluster_cell_type %>%
  unite("cluster_cell_type", c(first.labels, seurat_clusters), remove=FALSE) %>%
  pivot_longer(
    c(seurat_clusters, first.labels_single),
    names_to = "classification", values_to = "value"
  ) %>%
  
  ggplot(aes(x = classification, stratum = value, alluvium = cell,
           fill = first.labels, label = value)) +
  scale_x_discrete(expand = c(1, 1)) +
  geom_flow() +
  geom_stratum(alpha = .5) +
  # geom_text(stat = "stratum", size = 3) +
  geom_text_repel(stat = "stratum", size = 3,
             nudge_x      = 0.05,
             direction    = "y",
             angle        = 0,
             vjust        = 0,
             segment.size = 0.2
         ) +
  scale_fill_manual(values = friendly_cols) +
  #guides(fill = FALSE) +
  coord_flip() +
  theme_bw() +
  theme(
    panel.border = element_blank(),
    axis.line = element_line(),
    panel.grid.major = element_line(size = 0.2),
    panel.grid.minor = element_line(size = 0.1),
    text = element_text(size = 9),
    legend.position = "bottom",
    strip.background = element_blank(),
    axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
    axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
    axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
  )

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.