The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
tidyrules R package provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.
website: https://talegari.github.io/tidyrules/
library(tidyrules)
= C50::C5.0(Species ~ ., data = iris, rules = TRUE)
model_c5 ::pandoc.table(tidy(model_c5), split.tables = 120)
pander#>
#> ----------------------------------------------------------------------------------------------
#> rule_nbr trial_nbr LHS RHS support confidence lift
#> ---------- ----------- ---------------------------- ------------ --------- ------------ ------
#> 1 1 ( Petal.Length <= 1.9 ) setosa 50 0.9808 2.9
#>
#> 2 1 ( Petal.Length > 1.9 ) & ( versicolor 48 0.96 2.9
#> Petal.Length <= 4.9 ) & (
#> Petal.Width <= 1.7 )
#>
#> 3 1 ( Petal.Width > 1.7 ) virginica 46 0.9583 2.9
#>
#> 4 1 ( Petal.Length > 4.9 ) virginica 46 0.9375 2.8
#> ----------------------------------------------------------------------------------------------
You can install the released version of tidyrules from CRAN with:
install.packages("tidyrules")
And the development version from GitHub with:
# install.packages("devtools")
::install_github("talegari/tidyrules") devtools
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.