The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Function | Works |
---|---|
tidypredict_fit() , tidypredict_sql() ,
parse_model() |
✔ |
tidypredict_to_column() |
✗ |
tidypredict_test() |
✗ |
tidypredict_interval() ,
tidypredict_sql_interval() |
✗ |
parsnip |
✔ |
Here is a simple ranger()
model using the
iris
dataset:
The parser is based on the output from the
ranger::treeInfo()
function. It will return as many
decision paths as there are non-NA rows in the prediction
field.
treeInfo(model) %>%
head()
#> nodeID leftChild rightChild splitvarID splitvarName splitval terminal
#> 1 0 1 2 3 Petal.Width 0.75 FALSE
#> 2 1 NA NA NA <NA> NA TRUE
#> 3 2 3 4 3 Petal.Width 1.75 FALSE
#> 4 3 5 6 0 Sepal.Length 7.10 FALSE
#> 5 4 NA NA NA <NA> NA TRUE
#> 6 5 7 8 3 Petal.Width 1.65 FALSE
#> prediction
#> 1 <NA>
#> 2 setosa
#> 3 <NA>
#> 4 <NA>
#> 5 virginica
#> 6 <NA>
The output from parse_model()
is transformed into a
dplyr
, a.k.a Tidy Eval, formula. The entire decision tree
becomes one dplyr::case_when()
statement
tidypredict_fit(model)[1]
#> [[1]]
#> case_when(Petal.Width < 0.75 ~ "setosa", Petal.Width >= 1.75 &
#> Petal.Width >= 0.75 ~ "virginica", Sepal.Length >= 7.1 &
#> Petal.Width < 1.75 & Petal.Width >= 0.75 ~ "virginica", Petal.Length >=
#> 5.35 & Petal.Width < 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "virginica", Sepal.Width < 2.75 &
#> Petal.Width >= 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "virginica", Sepal.Width >=
#> 2.75 & Petal.Width >= 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "versicolor", Petal.Width <
#> 1.45 & Petal.Length < 5.35 & Petal.Width < 1.65 & Sepal.Length <
#> 7.1 & Petal.Width < 1.75 & Petal.Width >= 0.75 ~ "versicolor",
#> Petal.Length < 5 & Petal.Width >= 1.45 & Petal.Length < 5.35 &
#> Petal.Width < 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "versicolor", Sepal.Length <
#> 6.15 & Petal.Length >= 5 & Petal.Width >= 1.45 & Petal.Length <
#> 5.35 & Petal.Width < 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "versicolor", Sepal.Length >=
#> 6.15 & Petal.Length >= 5 & Petal.Width >= 1.45 & Petal.Length <
#> 5.35 & Petal.Width < 1.65 & Sepal.Length < 7.1 & Petal.Width <
#> 1.75 & Petal.Width >= 0.75 ~ "virginica")
From there, the Tidy Eval formula can be used anywhere where it can
be operated. tidypredict
provides three paths:
dplyr
,
mutate(iris, !! tidypredict_fit(model))
tidypredict_to_column(model)
to a piped command
settidypredict_to_sql(model)
to retrieve the SQL
statementtidypredict
also supports ranger
model
objects fitted via the parsnip
package.
library(parsnip)
parsnip_model <- rand_forest(mode = "classification") %>%
set_engine("ranger") %>%
fit(Species ~ ., data = iris)
tidypredict_fit(parsnip_model)[[1]]
#> case_when(Petal.Width < 0.7 ~ "setosa", Petal.Length < 4.85 &
#> Petal.Width >= 0.7 ~ "versicolor", Petal.Width < 1.75 & Petal.Length >=
#> 4.85 & Petal.Width >= 0.7 ~ "versicolor", Petal.Width >=
#> 1.75 & Petal.Length >= 4.85 & Petal.Width >= 0.7 ~ "virginica")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.