The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Function | Works |
---|---|
tidypredict_fit() , tidypredict_sql() ,
parse_model() |
✔ |
tidypredict_to_column() |
✔ |
tidypredict_test() |
✔ |
tidypredict_interval() ,
tidypredict_sql_interval() |
✗ |
parsnip |
✗ |
tidypredict_
functionslibrary(Cubist)
data("BostonHousing", package = "mlbench")
model <- Cubist::cubist(x = BostonHousing[, -14], y = BostonHousing$medv, committees = 3)
Create the R formula
tidypredict_fit(model)
#> (ifelse(nox >= 0.668, -1.11 + crim * -0.02 + nox * 21.4 + rm *
#> 0.1 + age * -0.003 + dis * 2.93 + ptratio * -0.13 + b * 0.008 +
#> lstat * -0.33, 0) + ifelse(lstat >= 9.59 & nox < 0.668, 23.57 +
#> crim * 0.05 + nox * -5.2 + rm * 3.1 + age * -0.048 + dis *
#> -0.81 + rad * 0.02 + tax * -0.0041 + ptratio * -0.71 + b *
#> 0.01 + lstat * -0.15, 0) + ifelse(lstat < 9.59 & rm < 6.226,
#> 1.18 + crim * 3.83 + rm * 4.3 + age * -0.06 + dis * -0.09 +
#> tax * -0.003 + ptratio * -0.08 + lstat * -0.11, 0) +
#> ifelse(lstat < 9.59 & rm >= 6.226, -4.71 + crim * 2.22 +
#> zn * 0.008 + nox * -1.7 + rm * 9.2 + age * -0.04 + dis *
#> -0.71 + rad * 0.03 + tax * -0.0182 + ptratio * -0.72 +
#> lstat * -0.83, 0) + ifelse(dis < 1.755 & lstat >= 5.12,
#> 122.32 + crim * -0.29 + nox * -21.6 + rm * -3 + dis * -30.88 +
#> rad * 0.02 + tax * -0.001 + b * -0.023 + lstat * -0.73,
#> 0) + ifelse(rm < 6.545 & lstat >= 5.12, 27.8 + crim * -0.16 +
#> zn * 0.007 + nox * -3.9 + rm * 2 + age * -0.035 + dis * -0.7 +
#> rad * 0.28 + tax * -0.0135 + ptratio * -0.6 + b * 0.013 +
#> lstat * -0.25, 0) + ifelse(rm >= 6.545 & lstat >= 5.12, 22.21 +
#> crim * -0.04 + zn * 0.01 + indus * -0.02 + nox * -4 + rm *
#> 4.7 + dis * -0.34 + rad * 0.11 + tax * -0.0248 + ptratio *
#> -0.9 + b * 0.002 + lstat * -0.1, 0) + ifelse(lstat < 5.12 &
#> rm < 8.034, -71.95 + rm * 17 + age * -0.06 + tax * -0.0112 +
#> ptratio * -0.48 + lstat * -0.03, 0) + ifelse(rm >= 8.034 &
#> dis >= 3.199, -32.79 + crim * -0.01 + zn * 0.005 + nox *
#> -1.8 + rm * 12.9 + age * -0.117 + dis * -0.15 + rad * 0.04 +
#> tax * -0.0246 + ptratio * -1.05 + lstat * -0.04, 0) + ifelse(lstat <
#> 5.12 & dis < 3.199, 53.41 + rm * 1.6 + dis * -7.16 + tax *
#> 0.0088 + lstat * -0.68, 0) + ifelse(nox >= 0.668, -36.31 +
#> crim * 0.08 + nox * 48.4 + dis * 7.52 + b * 0.01 + lstat *
#> -0.24, 0) + ifelse(lstat >= 9.53 & nox < 0.668, 28.04 + nox *
#> -4.8 + rm * 2.9 + age * -0.051 + dis * -0.86 + rad * 0.01 +
#> tax * -0.0019 + ptratio * -0.72 + lstat * -0.12, 0) + ifelse(lstat <
#> 9.53, -26.05 + crim * 0.89 + nox * -2.3 + rm * 9.6 + dis *
#> -0.17 + rad * 0.02 + tax * -0.0055 + ptratio * -0.12 + b *
#> 0.001 + lstat * -0.74, 0) + ifelse(lstat < 9.53 & dis < 2.64,
#> 136.67 + crim * 7.2 + nox * -96.6 + rm * 1.1 + tax * -0.0033 +
#> ptratio * -3.31 + lstat * -0.1, 0))/3
SQL output example
tidypredict_sql(model, dbplyr::simulate_odbc())
#> <SQL> (((((((((((((CASE WHEN (`nox` >= 0.668) THEN ((((((((-1.11 + `crim` * -0.02) + `nox` * 21.4) + `rm` * 0.1) + `age` * -0.003) + `dis` * 2.93) + `ptratio` * -0.13) + `b` * 0.008) + `lstat` * -0.33) WHEN NOT (`nox` >= 0.668) THEN 0.0 END + CASE WHEN (`lstat` >= 9.59 AND `nox` < 0.668) THEN ((((((((((23.57 + `crim` * 0.05) + `nox` * -5.2) + `rm` * 3.1) + `age` * -0.048) + `dis` * -0.81) + `rad` * 0.02) + `tax` * -0.0041) + `ptratio` * -0.71) + `b` * 0.01) + `lstat` * -0.15) WHEN NOT (`lstat` >= 9.59 AND `nox` < 0.668) THEN 0.0 END) + CASE WHEN (`lstat` < 9.59 AND `rm` < 6.226) THEN (((((((1.18 + `crim` * 3.83) + `rm` * 4.3) + `age` * -0.06) + `dis` * -0.09) + `tax` * -0.003) + `ptratio` * -0.08) + `lstat` * -0.11) WHEN NOT (`lstat` < 9.59 AND `rm` < 6.226) THEN 0.0 END) + CASE WHEN (`lstat` < 9.59 AND `rm` >= 6.226) THEN ((((((((((-4.71 + `crim` * 2.22) + `zn` * 0.008) + `nox` * -1.7) + `rm` * 9.2) + `age` * -0.04) + `dis` * -0.71) + `rad` * 0.03) + `tax` * -0.0182) + `ptratio` * -0.72) + `lstat` * -0.83) WHEN NOT (`lstat` < 9.59 AND `rm` >= 6.226) THEN 0.0 END) + CASE WHEN (`dis` < 1.755 AND `lstat` >= 5.12) THEN ((((((((122.32 + `crim` * -0.29) + `nox` * -21.6) + `rm` * -3.0) + `dis` * -30.88) + `rad` * 0.02) + `tax` * -0.001) + `b` * -0.023) + `lstat` * -0.73) WHEN NOT (`dis` < 1.755 AND `lstat` >= 5.12) THEN 0.0 END) + CASE WHEN (`rm` < 6.545 AND `lstat` >= 5.12) THEN (((((((((((27.8 + `crim` * -0.16) + `zn` * 0.007) + `nox` * -3.9) + `rm` * 2.0) + `age` * -0.035) + `dis` * -0.7) + `rad` * 0.28) + `tax` * -0.0135) + `ptratio` * -0.6) + `b` * 0.013) + `lstat` * -0.25) WHEN NOT (`rm` < 6.545 AND `lstat` >= 5.12) THEN 0.0 END) + CASE WHEN (`rm` >= 6.545 AND `lstat` >= 5.12) THEN (((((((((((22.21 + `crim` * -0.04) + `zn` * 0.01) + `indus` * -0.02) + `nox` * -4.0) + `rm` * 4.7) + `dis` * -0.34) + `rad` * 0.11) + `tax` * -0.0248) + `ptratio` * -0.9) + `b` * 0.002) + `lstat` * -0.1) WHEN NOT (`rm` >= 6.545 AND `lstat` >= 5.12) THEN 0.0 END) + CASE WHEN (`lstat` < 5.12 AND `rm` < 8.034) THEN (((((-71.95 + `rm` * 17.0) + `age` * -0.06) + `tax` * -0.0112) + `ptratio` * -0.48) + `lstat` * -0.03) WHEN NOT (`lstat` < 5.12 AND `rm` < 8.034) THEN 0.0 END) + CASE WHEN (`rm` >= 8.034 AND `dis` >= 3.199) THEN ((((((((((-32.79 + `crim` * -0.01) + `zn` * 0.005) + `nox` * -1.8) + `rm` * 12.9) + `age` * -0.117) + `dis` * -0.15) + `rad` * 0.04) + `tax` * -0.0246) + `ptratio` * -1.05) + `lstat` * -0.04) WHEN NOT (`rm` >= 8.034 AND `dis` >= 3.199) THEN 0.0 END) + CASE WHEN (`lstat` < 5.12 AND `dis` < 3.199) THEN ((((53.41 + `rm` * 1.6) + `dis` * -7.16) + `tax` * 0.0088) + `lstat` * -0.68) WHEN NOT (`lstat` < 5.12 AND `dis` < 3.199) THEN 0.0 END) + CASE WHEN (`nox` >= 0.668) THEN (((((-36.31 + `crim` * 0.08) + `nox` * 48.4) + `dis` * 7.52) + `b` * 0.01) + `lstat` * -0.24) WHEN NOT (`nox` >= 0.668) THEN 0.0 END) + CASE WHEN (`lstat` >= 9.53 AND `nox` < 0.668) THEN ((((((((28.04 + `nox` * -4.8) + `rm` * 2.9) + `age` * -0.051) + `dis` * -0.86) + `rad` * 0.01) + `tax` * -0.0019) + `ptratio` * -0.72) + `lstat` * -0.12) WHEN NOT (`lstat` >= 9.53 AND `nox` < 0.668) THEN 0.0 END) + CASE WHEN (`lstat` < 9.53) THEN (((((((((-26.05 + `crim` * 0.89) + `nox` * -2.3) + `rm` * 9.6) + `dis` * -0.17) + `rad` * 0.02) + `tax` * -0.0055) + `ptratio` * -0.12) + `b` * 0.001) + `lstat` * -0.74) WHEN NOT (`lstat` < 9.53) THEN 0.0 END) + CASE WHEN (`lstat` < 9.53 AND `dis` < 2.64) THEN ((((((136.67 + `crim` * 7.2) + `nox` * -96.6) + `rm` * 1.1) + `tax` * -0.0033) + `ptratio` * -3.31) + `lstat` * -0.1) WHEN NOT (`lstat` < 9.53 AND `dis` < 2.64) THEN 0.0 END) / 3.0
Add the prediction to the original table
library(dplyr)
BostonHousing %>%
tidypredict_to_column(model) %>%
glimpse()
#> Rows: 506
#> Columns: 15
#> $ crim <dbl> 0.00632, 0.02731, 0.02729, 0.03237, 0.06905, 0.02985, 0.08829,…
#> $ zn <dbl> 18.0, 0.0, 0.0, 0.0, 0.0, 0.0, 12.5, 12.5, 12.5, 12.5, 12.5, 1…
#> $ indus <dbl> 2.31, 7.07, 7.07, 2.18, 2.18, 2.18, 7.87, 7.87, 7.87, 7.87, 7.…
#> $ chas <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ nox <dbl> 0.538, 0.469, 0.469, 0.458, 0.458, 0.458, 0.524, 0.524, 0.524,…
#> $ rm <dbl> 6.575, 6.421, 7.185, 6.998, 7.147, 6.430, 6.012, 6.172, 5.631,…
#> $ age <dbl> 65.2, 78.9, 61.1, 45.8, 54.2, 58.7, 66.6, 96.1, 100.0, 85.9, 9…
#> $ dis <dbl> 4.0900, 4.9671, 4.9671, 6.0622, 6.0622, 6.0622, 5.5605, 5.9505…
#> $ rad <dbl> 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,…
#> $ tax <dbl> 296, 242, 242, 222, 222, 222, 311, 311, 311, 311, 311, 311, 31…
#> $ ptratio <dbl> 15.3, 17.8, 17.8, 18.7, 18.7, 18.7, 15.2, 15.2, 15.2, 15.2, 15…
#> $ b <dbl> 396.90, 396.90, 392.83, 394.63, 396.90, 394.12, 395.60, 396.90…
#> $ lstat <dbl> 4.98, 9.14, 4.03, 2.94, 5.33, 5.21, 12.43, 19.15, 29.93, 17.10…
#> $ medv <dbl> 24.0, 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15…
#> $ fit <dbl> 27.50665, 22.71805, 34.78128, 33.19372, 31.93653, 25.03739, 21…
Confirm that tidypredict
results match to the
model’s predict()
results
Here is an example of the model spec:
pm <- parse_model(model)
str(pm, 2)
#> List of 2
#> $ general:List of 5
#> ..$ model : chr "cubist"
#> ..$ type : chr "tree"
#> ..$ version: num 2
#> ..$ mode : chr "ifelse"
#> ..$ divisor: num 3
#> $ trees :List of 1
#> ..$ :List of 14
#> - attr(*, "class")= chr [1:3] "parsed_model" "pm_tree" "list"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.