The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load the packages:
Preparing the data:
alta_lake_geochem
#> # A tibble: 192 × 9
#> location param depth age value stdev units n zone
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int> <chr>
#> 1 ALGC2 Cu 0.25 2015. 76 NA ppm 1 Zone 3
#> 2 ALGC2 Cu 0.75 2011. 108. 4.50 ppm 3 Zone 3
#> 3 ALGC2 Cu 1.25 2008. 158 NA ppm 1 Zone 3
#> 4 ALGC2 Cu 1.75 2003. 169 NA ppm 1 Zone 3
#> 5 ALGC2 Cu 2.5 1998. 161 NA ppm 1 Zone 3
#> 6 ALGC2 Cu 3.5 1982. 129 NA ppm 1 Zone 3
#> 7 ALGC2 Cu 4.5 1966. 88.7 3.86 ppm 3 Zone 2
#> 8 ALGC2 Cu 5.5 1947. 65 NA ppm 1 Zone 2
#> 9 ALGC2 Cu 6.5 1922. 62.3 9.53 ppm 3 Zone 2
#> 10 ALGC2 Cu 7.5 1896. 48 NA ppm 1 Zone 2
#> # ℹ 182 more rowsalta_nested <- nested_data(
alta_lake_geochem,
qualifiers = c(age, depth, zone),
key = param,
value = value,
trans = scale
)
alta_nested
#> # A tibble: 1 × 4
#> discarded_columns discarded_rows qualifiers data
#> * <list> <list> <list> <list>
#> 1 <tibble [32 × 0]> <tibble [0 × 9]> <tibble [32 × 4]> <tibble [32 × 6]>alta_nested %>% unnested_data(data)
#> # A tibble: 32 × 6
#> C[,1] `C/N`[,1] Cu[,1] Ti[,1] d13C[,1] d15N[,1]
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -1.54 1.26 -0.794 0.807 1.03 -0.670
#> 2 -1.59 1.36 -0.559 1.33 1.19 0.0499
#> 3 -1.98 0.960 -0.721 0.682 1.10 -0.511
#> 4 -0.189 1.61 -0.749 0.233 0.836 -2.37
#> 5 0.993 2.48 -0.694 0.908 1.06 -2.55
#> 6 -0.157 1.76 -0.712 0.941 1.17 -1.52
#> 7 -0.642 1.36 -0.667 1.14 1.07 -1.39
#> 8 -1.07 0.924 -0.559 1.16 0.820 -0.439
#> 9 -0.722 0.696 -0.830 0.932 0.765 -0.929
#> 10 -0.631 0.309 -0.504 0.882 0.409 -0.166
#> # ℹ 22 more rows
alta_nested %>% unnested_data(qualifiers, data)
#> # A tibble: 32 × 10
#> age depth zone row_number C[,1] `C/N`[,1] Cu[,1] Ti[,1] d13C[,1] d15N[,1]
#> <dbl> <dbl> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1550 29.5 Zone… 1 -1.54 1.26 -0.794 0.807 1.03 -0.670
#> 2 1566. 28.5 Zone… 2 -1.59 1.36 -0.559 1.33 1.19 0.0499
#> 3 1581. 27.5 Zone… 3 -1.98 0.960 -0.721 0.682 1.10 -0.511
#> 4 1597. 26.5 Zone… 4 -0.189 1.61 -0.749 0.233 0.836 -2.37
#> 5 1613. 25.5 Zone… 5 0.993 2.48 -0.694 0.908 1.06 -2.55
#> 6 1629. 24.5 Zone… 6 -0.157 1.76 -0.712 0.941 1.17 -1.52
#> 7 1644. 23.5 Zone… 7 -0.642 1.36 -0.667 1.14 1.07 -1.39
#> 8 1660. 22.5 Zone… 8 -1.07 0.924 -0.559 1.16 0.820 -0.439
#> 9 1676. 21.5 Zone… 9 -0.722 0.696 -0.830 0.932 0.765 -0.929
#> 10 1692. 20.5 Zone… 10 -0.631 0.309 -0.504 0.882 0.409 -0.166
#> # ℹ 22 more rowspca <- alta_nested %>% nested_prcomp()
pca
#> # A tibble: 1 × 8
#> discarded_columns discarded_rows qualifiers data model variance
#> * <list> <list> <list> <list> <list> <list>
#> 1 <tibble [32 × 0]> <tibble [0 × 9]> <tibble> <tibble> <prcomp> <tibble>
#> # ℹ 2 more variables: loadings <list>, scores <list>pca %>% unnested_data(qualifiers, scores)
#> # A tibble: 32 × 10
#> age depth zone row_number PC1 PC2 PC3 PC4 PC5 PC6
#> <dbl> <dbl> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1550 29.5 Zone 1 1 -2.48 -0.273 0.409 0.518 -0.316 0.0538
#> 2 1566. 28.5 Zone 1 2 -2.48 -0.675 0.902 0.561 0.364 0.190
#> 3 1581. 27.5 Zone 1 3 -2.41 -0.721 0.576 0.465 -0.619 0.184
#> 4 1597. 26.5 Zone 1 4 -2.39 1.73 -0.527 0.197 -0.742 -0.0656
#> 5 1613. 25.5 Zone 1 5 -2.73 2.82 -0.666 0.212 0.432 -0.0715
#> 6 1629. 24.5 Zone 1 6 -2.56 1.22 -0.155 0.235 0.208 0.105
#> 7 1644. 23.5 Zone 1 7 -2.57 0.708 0.123 -0.0210 0.0114 -0.0286
#> 8 1660. 22.5 Zone 1 8 -2.04 -0.243 0.490 0.101 0.157 -0.0834
#> 9 1676. 21.5 Zone 1 9 -1.98 0.0702 -0.0657 -0.147 -0.0813 -0.186
#> 10 1692. 20.5 Zone 1 10 -1.20 -0.376 0.202 -0.132 0.202 -0.220
#> # ℹ 22 more rows
pca %>% unnested_data(variance)
#> # A tibble: 6 × 6
#> component component_text standard_deviation variance variance_proportion
#> <int> <chr> <dbl> <dbl> <dbl>
#> 1 1 PC1 2.15 4.61 0.768
#> 2 2 PC2 0.884 0.781 0.130
#> 3 3 PC3 0.603 0.364 0.0607
#> 4 4 PC4 0.381 0.145 0.0242
#> 5 5 PC5 0.276 0.0761 0.0127
#> 6 6 PC6 0.151 0.0228 0.00380
#> # ℹ 1 more variable: variance_proportion_cumulative <dbl>
pca %>% unnested_data(loadings)
#> # A tibble: 6 × 7
#> variable PC1 PC2 PC3 PC4 PC5 PC6
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 C 0.380 0.540 -0.460 -0.162 0.567 0.0718
#> 2 C/N -0.401 0.451 0.207 0.735 0.223 -0.0408
#> 3 Cu 0.387 0.340 0.760 -0.173 -0.0609 0.352
#> 4 Ti -0.439 -0.0783 0.356 -0.483 0.565 -0.350
#> 5 d13C -0.458 -0.0890 -0.144 -0.145 0.126 0.851
#> 6 d15N 0.377 -0.613 0.144 0.386 0.539 0.149keji_nested <- keji_lakes_plottable %>%
group_by(location) %>%
nested_data(qualifiers = depth, key = taxon, value = rel_abund)
keji_nested %>% unnested_data(qualifiers, data)
#> # A tibble: 37 × 9
#> location depth row_number Asterionella ralfsii…¹ `Aulacoseira distans`
#> <chr> <dbl> <int> <dbl> <dbl>
#> 1 Beaverskin Lake 0.125 1 0 3.02
#> 2 Beaverskin Lake 0.375 2 0 3.25
#> 3 Beaverskin Lake 0.825 3 1.32 0
#> 4 Beaverskin Lake 2.12 4 0.333 0
#> 5 Beaverskin Lake 3.12 5 0 0
#> 6 Beaverskin Lake 4.12 6 0 0
#> 7 Beaverskin Lake 5.38 7 0.987 0
#> 8 Beaverskin Lake 6.38 8 0.993 0
#> 9 Beaverskin Lake 7.62 9 1.63 0
#> 10 Beaverskin Lake 9.12 10 0.328 0
#> # ℹ 27 more rows
#> # ℹ abbreviated name: ¹`Asterionella ralfsii var. americana (large)`
#> # ℹ 4 more variables: `Aulacoseira lirata` <dbl>,
#> # `Cyclotella stelligera` <dbl>, `Tabellaria flocculosa (strain III)` <dbl>,
#> # Other <dbl>coniss %>% select(location, zone_info) %>% unnest(zone_info)
#> # A tibble: 4 × 12
#> location hclust_zone min_depth max_depth first_depth last_depth min_row_number
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Beavers… 1 0.125 4.12 0.125 4.12 1
#> 2 Beavers… 2 5.38 23.4 5.38 23.4 7
#> 3 Peskawa… 1 0.125 5.12 0.125 5.12 1
#> 4 Peskawa… 2 6.38 35.1 6.38 35.1 6
#> # ℹ 5 more variables: max_row_number <dbl>, first_row_number <dbl>,
#> # last_row_number <dbl>, boundary_depth <dbl>, boundary_row_number <dbl>keji_nested %>%
nested_chclust_coniss(n_groups = c(3, 2)) %>%
select(location, zone_info) %>%
unnested_data(zone_info)
#> # A tibble: 5 × 12
#> location hclust_zone min_depth max_depth first_depth last_depth min_row_number
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Beavers… 1 0.125 4.12 0.125 4.12 1
#> 2 Beavers… 2 5.38 13.6 5.38 13.6 7
#> 3 Beavers… 3 15.1 23.4 15.1 23.4 14
#> 4 Peskawa… 1 0.125 5.12 0.125 5.12 1
#> 5 Peskawa… 2 6.38 35.1 6.38 35.1 6
#> # ℹ 5 more variables: max_row_number <dbl>, first_row_number <dbl>,
#> # last_row_number <dbl>, boundary_depth <dbl>, boundary_row_number <dbl>halifax_nested <- halifax_lakes_plottable %>%
nested_data(c(location, sample_type), taxon, rel_abund, fill = 0)
halifax_nested %>% unnested_data(qualifiers, data)
#> # A tibble: 20 × 9
#> location sample_type row_number `Aulacoseira distans` `Eunotia exigua`
#> <chr> <chr> <int> <dbl> <dbl>
#> 1 Anderson Lake bottom 1 4.65 2.42
#> 2 Anderson Lake top 2 1.87 0
#> 3 Bayers bottom 3 11.6 5.71
#> 4 Bayers top 4 0.993 6.81
#> 5 Bell Lake bottom 5 0.476 2.62
#> 6 Bell Lake top 6 9.22 0.432
#> 7 Cranberry Lake bottom 7 0 9.17
#> 8 Cranberry Lake top 8 0 7.72
#> 9 Frasers Lake bottom 9 6.42 0.714
#> 10 Frasers Lake top 10 4.85 0
#> 11 Kinsac lake bottom 11 11.3 8.33
#> 12 Kinsac lake top 12 0 3.85
#> 13 Little Albro L… bottom 13 2.34 2.34
#> 14 Little Albro L… top 14 5.78 2.61
#> 15 Little Springf… bottom 15 12.1 2.64
#> 16 Little Springf… top 16 0 19.8
#> 17 Maynard Lake bottom 17 9.75 4
#> 18 Maynard Lake top 18 2.98 1.23
#> 19 Miller Lake bottom 19 1.79 2.19
#> 20 Miller Lake top 20 0.816 4.35
#> # ℹ 4 more variables: `Fragilariforma exigua` <dbl>,
#> # `Tabellaria fenestrata` <dbl>, `Tabellaria flocculosa (strain IV)` <dbl>,
#> # Other <dbl>hclust <- halifax_nested %>%
nested_hclust(method = "average")
plot(
hclust,
labels = sprintf(
"%s (%s)",
qualifiers$location,
qualifiers$sample_type
)
)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.