The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Tidyverse-native toolkit for intensive longitudinal data (ILD).
remotes::install_github("alitovchenko/tidyILD")library(tidyILD)
# Prepare: validate time structure, add .ild_* columns and metadata
d <- data.frame(
id = rep(1:3, each = 5),
time = rep(as.POSIXct(0:4 * 3600, origin = "1970-01-01"), 3),
mood = rnorm(15)
)
x <- ild_prepare(d, id = "id", time = "time", gap_threshold = 7200)
# Inspect
ild_summary(x)
# Within-between decomposition
x <- ild_center(x, mood)
# Spacing-aware lags
x <- ild_lag(x, mood, mode = "gap_aware", max_gap = 7200)ild_prepare() — encode longitudinal structure, spacing,
gapsild_summary() — one-shot summaryild_center() — person-mean centering (WP/BP)ild_lag() — index or gap-aware lagsild_spacing_class() — regular-ish vs irregular-ishild_missing_pattern() — missingness by
person/variableild_lme() — mixed-effects model (lmer or nlme with
AR1/CAR1)ild_diagnostics() — residual ACF, residuals vs
fitted/timeild_plot() — trajectory, heatmap, gaps, fitted vs
observed, residual ACFild_simulate() — simple simulated ILD for examplesild_check_lags() — audit lag columns (valid vs
invalid)ema_example — built-in dataset
(data(ema_example))broom.mixed for
tidy(fit) and augment(fit) on
ild_lme fits.ild_prepare() through ild_lme() and
ild_plot().MIT.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.