The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Mangiola et al., (2020). tidyHeatmap: an R package for modular heatmap production based on tidy principles. Journal of Open Source Software, 5(52), 2472, https://doi.org/10.21105/joss.02472
Please have a look also to
website: stemangiola.github.io/tidyHeatmap
tidyHeatmap
is a package that introduces tidy principles
to the creation of information-rich heatmaps. This package uses ComplexHeatmap
as graphical engine.
Advantages:
df |> group_by(...)
Function | Description |
---|---|
heatmap |
Plots base heatmap |
group_by |
dplyr function - groups heatpmap rows/columns |
annotation_tile |
Adds tile annotation to the heatmap |
annotation_point |
Adds point annotation to the heatmap |
annotation_bar |
Adds bar annotation to the heatmap |
annotation_numeric |
Adds bar + number annotation to the heatmap |
annotation_line |
Adds line annotation to the heatmap |
layer_text |
Add layer of text on top of the heatmap |
layer_point |
Adds layer of symbols on top of the heatmap |
layer_square |
Adds layer of symbols on top of the heatmap |
layer_diamond |
Adds layer of symbols on top of the heatmap |
layer_arrow_up |
Adds layer of symbols on top of the heatmap |
layer_arrow_down |
Add layer of symbols on top of the heatmap |
layer_star |
Add layer of symbols on top of the heatmap |
layer_asterisk |
Add layer of symbols on top of the heatmap |
split_rows |
Splits the rows based on the dendogram |
split_columns |
Splits the columns based on the dendogram |
save_pdf |
Saves the PDF of the heatmap |
+ |
Integrate heatmaps side-by-side |
as_ComplexHeatmap |
Convert the tidyHeatmap output to ComplexHeatmap for non-standard “drawing” |
wrap_heatmap |
Allows the integration with the patchwork package |
To install the most up-to-date version
To install the most stable version (however please keep in mind that this package is under a maturing lifecycle stage)
If you want to contribute to the software, report issues or problems with the software or seek support please open an issue here
The heatmaps visualise a multi-element, multi-feature dataset, annotated with independent variables. Each observation is a element-feature pair (e.g., person-physical characteristics).
element | feature | value | independent_variables |
---|---|---|---|
chr or fctr |
chr or fctr |
numeric |
… |
Let’s transform the mtcars dataset into a tidy “element-feature-independent variables” data frame. Where the independent variables in this case are ‘hp’ and ‘vs’.
mtcars_tidy <-
mtcars |>
as_tibble(rownames="Car name") |>
# Scale
mutate_at(vars(-`Car name`, -hp, -vs), scale) |>
# tidyfy
pivot_longer(cols = -c(`Car name`, hp, vs), names_to = "Property", values_to = "Value")
mtcars_tidy
## # A tibble: 288 × 5
## `Car name` hp vs Property Value[,1]
## <chr> <dbl> <dbl> <chr> <dbl>
## 1 Mazda RX4 110 0 mpg 0.151
## 2 Mazda RX4 110 0 cyl -0.105
## 3 Mazda RX4 110 0 disp -0.571
## 4 Mazda RX4 110 0 drat 0.568
## 5 Mazda RX4 110 0 wt -0.610
## 6 Mazda RX4 110 0 qsec -0.777
## 7 Mazda RX4 110 0 am 1.19
## 8 Mazda RX4 110 0 gear 0.424
## 9 Mazda RX4 110 0 carb 0.735
## 10 Mazda RX4 Wag 110 0 mpg 0.151
## # ℹ 278 more rows
For plotting, you simply pipe the input data frame into heatmap, specifying:
mtcars
mtcars_heatmap <-
mtcars_tidy |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
annotation_tile(hp)
## Warning: Using one column matrices in `filter()` was deprecated in dplyr 1.1.0.
## ℹ Please use one dimensional logical vectors instead.
## ℹ The deprecated feature was likely used in the tidyHeatmap package.
## Please report the issue at
## <https://github.com/stemangiola/tidyHeatmap/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## ℹ Please use `reframe()` instead.
## ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
## always returns an ungrouped data frame and adjust accordingly.
## ℹ The deprecated feature was likely used in the dplyr package.
## Please report the issue at <https://github.com/tidyverse/dplyr/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
Choose alternative clustering distance and methods.
tidyHeatmap::pasilla |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row",
# Arguments passed to ComplexHeatmap
clustering_distance_rows = "manhattan",
clustering_distance_columns = "manhattan",
clustering_method_rows = "ward.D",
clustering_method_columns = "ward.D"
)
We can easily group the data (one group per dimension maximum, at the moment only the vertical dimension is supported) with dplyr, and the heatmap will be grouped accordingly
# Make up more groupings
mtcars_tidy_groupings =
mtcars_tidy |>
mutate(property_group = if_else(Property %in% c("cyl", "disp"), "Engine", "Other"))
mtcars_tidy_groupings |>
group_by(vs, property_group) |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
annotation_tile(hp)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
We can provide colour palettes to groupings
mtcars_tidy_groupings |>
group_by(vs, property_group) |>
heatmap(
`Car name`, Property, Value ,
scale = "row",
palette_grouping = list(
# For first grouping (vs)
c("#66C2A5", "#FC8D62"),
# For second grouping (property_group)
c("#b58b4c", "#74a6aa")
)
) |>
annotation_tile(hp)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
We can split based on the cladogram
mtcars_tidy |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
split_rows(2) |>
split_columns(2)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
We can split on kmean clustering (using ComplexHeatmap options, it is stochastic)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
We can easily use custom palette, using strings, hexadecimal color character vector,
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = c("red", "white", "blue")
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
A better-looking blue-to-red palette
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = circlize::colorRamp2(
seq(-2, 2, length.out = 11),
RColorBrewer::brewer.pal(11, "RdBu")
)
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
Or a grid::colorRamp2 function for higher flexibility
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row",
palette_value = circlize::colorRamp2(c(-2, -1, 0, 1, 2), viridis::magma(5))
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
We can use custom colors for tile annotation
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row"
) |>
add_tile(
hp,
palette = c("red", "white", "blue")
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
## Warning: `add_tile()` was deprecated in tidyHeatmap 1.9.0.
## ℹ Please use `annotation_tile()` instead
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
We can use grid::colorRamp2 function for tile annotation for specific color scales
mtcars_tidy |>
heatmap(
`Car name`,
Property,
Value,
scale = "row"
) |>
annotation_tile(
hp,
palette = circlize::colorRamp2(c(0, 100, 200, 300), viridis::magma(4))
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
tidyHeatmap::pasilla |>
group_by(location, type) |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
annotation_tile(condition) |>
annotation_tile(activation)
Remove legends, adding aesthetics to annotations in a modular
fashion, using ComplexHeatmap
arguments
“tile”, “point”, “bar”, “line” and “numeric” are available
# Create some more data points
pasilla_plus <-
tidyHeatmap::pasilla |>
dplyr::mutate(activation_2 = activation, activation_3 = activation) |>
tidyr::nest(data = -sample) |>
dplyr::mutate(size = rnorm(n(), 4,0.5)) |>
dplyr::mutate(age = runif(n(), 50, 200)) |>
tidyr::unnest(data)
# Plot
pasilla_plus |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
annotation_tile(condition) |>
annotation_point(activation) |>
annotation_numeric(activation_3) |>
annotation_tile(activation_2) |>
annotation_bar(size) |>
annotation_line(age)
We can customise annotation sizes using the
grid::unit()
, and the size of their names using in-built
ComplexHeatmap
arguments
pasilla_plus |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
annotation_tile(condition, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
annotation_point(activation, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
annotation_tile(activation_2, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
annotation_bar(size, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8)) |>
annotation_line(age, size = unit(0.3, "cm"), annotation_name_gp= gpar(fontsize = 8))
Add a layer on top of the heatmap
tidyHeatmap::pasilla |>
# filter
filter(symbol %in% head(unique(tidyHeatmap::pasilla$symbol), n = 10)) |>
# Add dynamic size
mutate(my_size = runif(n(), 1,5)) |>
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
layer_point(
`count normalised adjusted log` > 6 & sample == "untreated3"
) |>
layer_square(
`count normalised adjusted log` > 6 & sample == "untreated2",
.size = my_size
) |>
layer_arrow_up(
`count normalised adjusted log` > 6 & sample == "untreated1",
.size = 4
)
Add a text layer on top of the heatmap
tidyHeatmap::pasilla |>
# filter
filter(symbol %in% head(unique(tidyHeatmap::pasilla$symbol), n = 10)) |>
# Add dynamic text
mutate(my_text = "mt", my_size = 7) |>
# Plot
heatmap(
.column = sample,
.row = symbol,
.value = `count normalised adjusted`,
scale = "row"
) |>
layer_text(
`count normalised adjusted log` > 6 & sample == "untreated3",
.value = "a",
.size = 15
) |>
layer_text(
`count normalised adjusted log` > 6 & sample == "untreated2",
.value = my_text,
.size = my_size
)
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
rect_gp = grid::gpar(col = "#161616", lwd = 0.5)
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
library(forcats)
mtcars_tidy |>
mutate(`Car name` = forcats::fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
cluster_rows = FALSE
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
mtcars_tidy |>
mutate(`Car name` = forcats::fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
column_dend_height = unit(0.2, "cm"),
row_dend_width = unit(0.2, "cm")
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
mtcars_tidy |>
mutate(`Car name` = forcats::fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row",
row_names_gp = gpar(fontsize = 7),
column_names_gp = gpar(fontsize = 7),
column_title_gp = gpar(fontsize = 7),
row_title_gp = gpar(fontsize = 7)
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
This can be done only for annotation_numeric
because of
ComplexHeatmap
requirements
(?ComplexHeatmap::anno_numeric)
mtcars_tidy |>
mutate(`Car name` = forcats::fct_reorder(`Car name`, `Car name`, .desc = TRUE)) %>%
heatmap(
`Car name`, Property, Value,
scale = "row"
) |>
annotation_numeric(hp, align_to="right")
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
ComplexHeatmap
functionalitiesComplexHeatmap has some graphical functionalities that are not
included in the standard functional framework. We can use
as_ComplexHeatmap
to convert our output before applying
drawing options.
heatmap(mtcars_tidy, `Car name`, Property, Value, scale = "row" ) %>%
as_ComplexHeatmap() %>%
ComplexHeatmap::draw(heatmap_legend_side = "left" )
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
draw
from
ComplexHeatmap
mtcars_tidy |>
heatmap(`Car name`, Property, Value, scale = "row" ) |>
as_ComplexHeatmap() |>
ComplexHeatmap::draw(
column_title = "TITLE",
column_title_gp = gpar(fontsize = 16)
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
library(ggplot2)
library(patchwork)
p_heatmap =
mtcars_tidy |>
heatmap(
`Car name`, Property, Value,
scale = "row",
show_heatmap_legend = FALSE,
row_names_gp = gpar(fontsize = 7)
)
## Warning in as_mapper(.f1)(.x): to_matrix says: there are NON-numerical columns,
## the matrix will NOT be numerical
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-apple-darwin20
## Running under: macOS Sonoma 14.6.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Australia/Adelaide
## tzcode source: internal
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] patchwork_1.3.0 ggplot2_3.5.1 forcats_1.0.0 tidyHeatmap_1.11.4
## [5] tidyr_1.3.1 dplyr_1.1.4
##
## loaded via a namespace (and not attached):
## [1] viridis_0.6.5 utf8_1.2.4 sass_0.4.9
## [4] generics_0.1.3 shape_1.4.6.1 digest_0.6.37
## [7] magrittr_2.0.3 evaluate_1.0.1 RColorBrewer_1.1-3
## [10] iterators_1.0.14 circlize_0.4.16 fastmap_1.2.0
## [13] foreach_1.5.2 doParallel_1.0.17 jsonlite_1.8.9
## [16] GlobalOptions_0.1.2 gridExtra_2.3 ComplexHeatmap_2.21.1
## [19] purrr_1.0.2 viridisLite_0.4.2 scales_1.3.0
## [22] codetools_0.2-20 jquerylib_0.1.4 cli_3.6.3
## [25] rlang_1.1.4 crayon_1.5.3 munsell_0.5.1
## [28] withr_3.0.2 cachem_1.1.0 yaml_2.3.10
## [31] tools_4.4.1 parallel_4.4.1 colorspace_2.1-1
## [34] GetoptLong_1.0.5 BiocGenerics_0.51.3 vctrs_0.6.5
## [37] R6_2.5.1 png_0.1-8 magick_2.8.5
## [40] matrixStats_1.4.1 stats4_4.4.1 lifecycle_1.0.4
## [43] S4Vectors_0.43.2 IRanges_2.39.2 clue_0.3-66
## [46] cluster_2.1.6 dendextend_1.19.0 pkgconfig_2.0.3
## [49] gtable_0.3.6 pillar_1.10.0 bslib_0.8.0
## [52] Rcpp_1.0.13-1 glue_1.8.0 xfun_0.49
## [55] tibble_3.2.1 tidyselect_1.2.1 rstudioapi_0.16.0
## [58] knitr_1.49 farver_2.1.2 rjson_0.2.23
## [61] htmltools_0.5.8.1 labeling_0.4.3 rmarkdown_2.29
## [64] Cairo_1.6-2 compiler_4.4.1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.