The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

tidier

CRAN status R-CMD-check

tidier package provides ‘Apache Spark’ style window aggregation for R dataframes and remote dbplyr tbls via ‘mutate’ in ‘dplyr’ flavour.

Example

Create a new column with average temp over last seven days in the same month.

set.seed(101)
airquality |>
  # create date column
  dplyr::mutate(date_col = lubridate::make_date(1973, Month, Day)) |>
  # create gaps by removing some days
  dplyr::slice_sample(prop = 0.8) |> 
  # compute mean temperature over last seven days in the same month
  tidier::mutate(avg_temp_over_last_week = mean(Temp, na.rm = TRUE),
                 .order_by = Day,
                 .by       = Month,
                 .frame    = c(lubridate::days(7), # 7 days before current row
                               lubridate::days(-1) # do not include current row
                               ),
                 .index    = date_col
                 )
#> # A tibble: 122 × 8
#>    Month Ozone Solar.R  Wind  Temp   Day date_col   avg_temp_over_last_week
#>    <int> <int>   <int> <dbl> <int> <int> <date>                       <dbl>
#>  1     6    NA     286   8.6    78     1 1973-06-01                   NaN  
#>  2     6    NA     242  16.1    67     3 1973-06-03                    78  
#>  3     6    NA     186   9.2    84     4 1973-06-04                    72.5
#>  4     6    NA     264  14.3    79     6 1973-06-06                    76.3
#>  5     6    29     127   9.7    82     7 1973-06-07                    77  
#>  6     6    NA     273   6.9    87     8 1973-06-08                    78  
#>  7     6    NA     259  10.9    93    11 1973-06-11                    83  
#>  8     6    NA     250   9.2    92    12 1973-06-12                    85.2
#>  9     6    23     148   8      82    13 1973-06-13                    86.6
#> 10     6    NA     332  13.8    80    14 1973-06-14                    87.2
#> # ℹ 112 more rows

Features

Motivation

This implementation is inspired by Apache Spark’s windowSpec class with rangeBetween and rowsBetween.

Ecosystem

  1. dbplyr implements this via dbplyr::win_over enabling sparklyr users to write window computations. Also see, dbplyr::window_order/dbplyr::window_frame. tidier’s mutate wraps this functionality via uniform syntax across dataframes and remote tbls.

  2. tidypyspark python package implements mutate style window computation API for pyspark.

Installation

Acknowledgements

tidier package is deeply indebted to three amazing packages and people behind it.

  1. dplyr:
Wickham H, François R, Henry L, Müller K, Vaughan D (2023). _dplyr: A
Grammar of Data Manipulation_. R package version 1.1.0,
<https://CRAN.R-project.org/package=dplyr>.
  1. slider:
Vaughan D (2021). _slider: Sliding Window Functions_. R package
version 0.2.2, <https://CRAN.R-project.org/package=slider>.
  1. dbplyr:
Wickham H, Girlich M, Ruiz E (2023). _dbplyr: A 'dplyr' Back End
  for Databases_. R package version 2.3.2,
  <https://CRAN.R-project.org/package=dbplyr>.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.