The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The packages used in this vignette are:
missing_values.R
rtables
requires that split variables to be factors.
When you try and split a variable that isn’t, a warning message will
appear. Here we purposefully convert the SEX variable to character to
demonstrate what happens when we try splitting the rows by this
variable. To fix this, df_explict_na
will convert this to a
factor resulting in the table being generated.
adsl <- tern_ex_adsl
adsl$SEX <- as.character(adsl$SEX)
vars <- c("AGE", "SEX", "RACE", "BMRKR1")
var_labels <- c(
"Age (yr)",
"Sex",
"Race",
"Continous Level Biomarker 1"
)
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
build_table(adsl)
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
result
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=69) (N=73) (N=58) (N=200)
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 69 73 58 200
#> Mean (SD) 34.1 (6.8) 35.8 (7.1) 36.1 (7.4) 35.3 (7.1)
#> Median 32.8 35.4 36.2 34.8
#> Min - Max 22.4 - 48.0 23.3 - 57.5 23.0 - 58.3 22.4 - 58.3
#> Sex
#> n 69 73 58 200
#> F 38 (55.1%) 40 (54.8%) 32 (55.2%) 110 (55%)
#> M 31 (44.9%) 33 (45.2%) 26 (44.8%) 90 (45%)
#> Race
#> n 69 73 58 200
#> ASIAN 38 (55.1%) 43 (58.9%) 29 (50%) 110 (55%)
#> BLACK OR AFRICAN AMERICAN 15 (21.7%) 13 (17.8%) 12 (20.7%) 40 (20%)
#> WHITE 11 (15.9%) 12 (16.4%) 11 (19%) 34 (17%)
#> AMERICAN INDIAN OR ALASKA NATIVE 4 (5.8%) 3 (4.1%) 6 (10.3%) 13 (6.5%)
#> MULTIPLE 1 (1.4%) 1 (1.4%) 0 2 (1%)
#> NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 0 1 (1.4%) 0 1 (0.5%)
#> OTHER 0 0 0 0
#> UNKNOWN 0 0 0 0
#> Continous Level Biomarker 1
#> n 69 73 58 200
#> Mean (SD) 6.3 (3.6) 6.7 (3.5) 6.2 (3.3) 6.4 (3.5)
#> Median 5.4 6.3 5.4 5.6
#> Min - Max 0.4 - 17.8 1.0 - 18.5 2.4 - 19.1 0.4 - 19.1
missing_values.R
rtables
Here we purposefully convert all M
values to
NA
in the SEX
variable. After running
df_explicit_na
the NA
values are encoded as
<Missing>
but they are not included in the table. As
well, the missing values are not included in the n
count
and they are not included in the denominator value for calculating the
percent values.
adsl <- tern_ex_adsl
adsl$SEX[adsl$SEX == "M"] <- NA
adsl <- df_explicit_na(adsl)
vars <- c("AGE", "SEX")
var_labels <- c(
"Age (yr)",
"Sex"
)
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
build_table(adsl)
result
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=69) (N=73) (N=58) (N=200)
#> ———————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 69 73 58 200
#> Mean (SD) 34.1 (6.8) 35.8 (7.1) 36.1 (7.4) 35.3 (7.1)
#> Median 32.8 35.4 36.2 34.8
#> Min - Max 22.4 - 48.0 23.3 - 57.5 23.0 - 58.3 22.4 - 58.3
#> Sex
#> n 38 40 32 110
#> F 38 (100%) 40 (100%) 32 (100%) 110 (100%)
#> M 0 0 0 0
missing_values.R
If you want the Na
values to be displayed in the table
and included in the n
count and as the denominator for
calculating percent values, use the na_level
argument.
adsl <- tern_ex_adsl
adsl$SEX[adsl$SEX == "M"] <- NA
adsl <- df_explicit_na(adsl, na_level = "Missing Values")
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
build_table(adsl)
result
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=69) (N=73) (N=58) (N=200)
#> ————————————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 69 73 58 200
#> Mean (SD) 34.1 (6.8) 35.8 (7.1) 36.1 (7.4) 35.3 (7.1)
#> Median 32.8 35.4 36.2 34.8
#> Min - Max 22.4 - 48.0 23.3 - 57.5 23.0 - 58.3 22.4 - 58.3
#> Sex
#> n 69 73 58 200
#> F 38 (55.1%) 40 (54.8%) 32 (55.2%) 110 (55%)
#> M 0 0 0 0
#> Missing Values 31 (44.9%) 33 (45.2%) 26 (44.8%) 90 (45%)
missing_values.R
Numeric variables that have missing values are not altered. This
means that any NA
value in a numeric variable will not be
included in the summary statistics, nor will they be included in the
denominator value for calculating the percent values. Here we make any
value less than 30 missing in the AGE
variable and only the
valued greater than 30 are included in the table below.
adsl <- tern_ex_adsl
adsl$AGE[adsl$AGE < 30] <- NA
adsl <- df_explicit_na(adsl)
vars <- c("AGE", "SEX")
var_labels <- c(
"Age (yr)",
"Sex"
)
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
build_table(adsl)
result
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=69) (N=73) (N=58) (N=200)
#> ———————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 46 56 44 146
#> Mean (SD) 37.8 (5.2) 38.3 (6.3) 39.1 (5.9) 38.3 (5.8)
#> Median 37.2 37.3 37.5 37.5
#> Min - Max 30.3 - 48.0 30.0 - 57.5 30.5 - 58.3 30.0 - 58.3
#> Sex
#> n 69 73 58 200
#> F 38 (55.1%) 40 (54.8%) 32 (55.2%) 110 (55%)
#> M 31 (44.9%) 33 (45.2%) 26 (44.8%) 90 (45%)
missing_values.R
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.