The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

optimum-mbp

library(telemetR)
fish <- telemetR::fish
receivers <- telemetR::receivers
detects <- telemetR::filtered_detections
local_tz <- "America/Los_Angeles"

fish <- format_org(fish, 
                   var_Id = "TagCode", 
                   var_release = "Release_Date",
                   var_tag_life = "TagLife",
                   var_ping_rate = "PRI",
                   local_time_zone = local_tz,
                   time_format = "%Y-%m-%d %H:%M:%S")
receivers <- format_receivers(receivers,
                              var_receiver_serial = "receiver_serial_number",
                              var_receiver_make = "receiver_make",
                              var_receiver_deploy = "receiver_start",
                              var_receiver_retrieve = "receiver_end",
                              local_time_zone = local_tz,
                              time_format = "%m/%d/%Y %H:%M:%S")
detects <- format_detects(detects,
                          var_Id = "Tag_Code",
                          var_datetime_local = "DateTime_Local",
                          var_receiver_serial = "ReceiverSN",
                          local_time_zone = local_tz,
                          time_format = "%Y-%m-%d %H:%M:%S")
# Build a new df which uses a range of blanking times to reprocess the original
# detection data (this is a slow process, especially for large datasets or
# large sequences of n)

blanked <- blanking_event(detects,
                     #Each general location is distinct enough to be a site
                     var_site = "receiver_general_location",
                     #Group the data by species, run, and origin (optional)
                     var_groups = "fish_type",
                     var_Id = "Tag_Code",
                     var_datetime = "DateTime_Local",
                     var_ping_rate = "tag_pulse_rate_interval_nominal",
                     n_val = seq(1,1000,5),
                     #Pulse rates for these tags are in seconds
                     time_unit = "secs"
                     )
head(blanked)
#> # A tibble: 6 × 9
#>   fish_type     Tag_Code mbp_n event_change receiver_general_location
#>   <chr>         <chr>    <dbl>        <int> <chr>                    
#> 1 MRH Steelhead 70A3         3            0 Grant_Line_DS            
#> 2 MRH Steelhead 70A3         3            1 Grant_Line_DS            
#> 3 MRH Steelhead 70A3         3            2 Grant_Line_DS            
#> 4 MRH Steelhead 70A3         3            3 Grant_Line_DS            
#> 5 MRH Steelhead 70A3         3            4 Grant_Line_DS            
#> 6 MRH Steelhead 70A3         3            5 Grant_Line_DS            
#> # ℹ 4 more variables: start_time <dttm>, end_time <dttm>, n_det <int>,
#> #   duration <dbl>

# This function compares the durations of the events created above. The function
# collects all the events for each given blanking period and compares each
# event duration to a sequence of given times. It then calculates the proportion
# of events which are longer than each given time for each blanking period for
# each organism group

compared <- duration_compare(blanked, 
                             var_groups = "fish_type", 
                             time_seq = seq(1,10000,10))
#> 
t = 1
t = 11
t = 21
t = 31
t = 41
t = 51
t = 61
t = 71
t = 81
t = 91
t = 101
t = 111
t = 121
t = 131
t = 141
t = 151
t = 161
t = 171
t = 181
t = 191
t = 201
t = 211
t = 221
t = 231
t = 241
t = 251
t = 261
t = 271
t = 281
t = 291
t = 301
t = 311
t = 321
t = 331
t = 341
t = 351
t = 361
t = 371
t = 381
t = 391
t = 401
t = 411
t = 421
t = 431
t = 441
t = 451
t = 461
t = 471
t = 481
t = 491
t = 501
t = 511
t = 521
t = 531
t = 541
t = 551
t = 561
t = 571
t = 581
t = 591
t = 601
t = 611
t = 621
t = 631
t = 641
t = 651
t = 661
t = 671
t = 681
t = 691
t = 701
t = 711
t = 721
t = 731
t = 741
t = 751
t = 761
t = 771
t = 781
t = 791
t = 801
t = 811
t = 821
t = 831
t = 841
t = 851
t = 861
t = 871
t = 881
t = 891
t = 901
t = 911
t = 921
t = 931
t = 941
t = 951
t = 961
t = 971
t = 981
t = 991
t = 1001
t = 1011
t = 1021
t = 1031
t = 1041
t = 1051
t = 1061
t = 1071
t = 1081
t = 1091
t = 1101
t = 1111
t = 1121
t = 1131
t = 1141
t = 1151
t = 1161
t = 1171
t = 1181
t = 1191
t = 1201
t = 1211
t = 1221
t = 1231
t = 1241
t = 1251
t = 1261
t = 1271
t = 1281
t = 1291
t = 1301
t = 1311
t = 1321
t = 1331
t = 1341
t = 1351
t = 1361
t = 1371
t = 1381
t = 1391
t = 1401
t = 1411
t = 1421
t = 1431
t = 1441
t = 1451
t = 1461
t = 1471
t = 1481
t = 1491
t = 1501
t = 1511
t = 1521
t = 1531
t = 1541
t = 1551
t = 1561
t = 1571
t = 1581
t = 1591
t = 1601
t = 1611
t = 1621
t = 1631
t = 1641
t = 1651
t = 1661
t = 1671
t = 1681
t = 1691
t = 1701
t = 1711
t = 1721
t = 1731
t = 1741
t = 1751
t = 1761
t = 1771
t = 1781
t = 1791
t = 1801
t = 1811
t = 1821
t = 1831
t = 1841
t = 1851
t = 1861
t = 1871
t = 1881
t = 1891
t = 1901
t = 1911
t = 1921
t = 1931
t = 1941
t = 1951
t = 1961
t = 1971
t = 1981
t = 1991
t = 2001
t = 2011
t = 2021
t = 2031
t = 2041
t = 2051
t = 2061
t = 2071
t = 2081
t = 2091
t = 2101
t = 2111
t = 2121
t = 2131
t = 2141
t = 2151
t = 2161
t = 2171
t = 2181
t = 2191
t = 2201
t = 2211
t = 2221
t = 2231
t = 2241
t = 2251
t = 2261
t = 2271
t = 2281
t = 2291
t = 2301
t = 2311
t = 2321
t = 2331
t = 2341
t = 2351
t = 2361
t = 2371
t = 2381
t = 2391
t = 2401
t = 2411
t = 2421
t = 2431
t = 2441
t = 2451
t = 2461
t = 2471
t = 2481
t = 2491
t = 2501
t = 2511
t = 2521
t = 2531
t = 2541
t = 2551
t = 2561
t = 2571
t = 2581
t = 2591
t = 2601
t = 2611
t = 2621
t = 2631
t = 2641
t = 2651
t = 2661
t = 2671
t = 2681
t = 2691
t = 2701
t = 2711
t = 2721
t = 2731
t = 2741
t = 2751
t = 2761
t = 2771
t = 2781
t = 2791
t = 2801
t = 2811
t = 2821
t = 2831
t = 2841
t = 2851
t = 2861
t = 2871
t = 2881
t = 2891
t = 2901
t = 2911
t = 2921
t = 2931
t = 2941
t = 2951
t = 2961
t = 2971
t = 2981
t = 2991
t = 3001
t = 3011
t = 3021
t = 3031
t = 3041
t = 3051
t = 3061
t = 3071
t = 3081
t = 3091
t = 3101
t = 3111
t = 3121
t = 3131
t = 3141
t = 3151
t = 3161
t = 3171
t = 3181
t = 3191
t = 3201
t = 3211
t = 3221
t = 3231
t = 3241
t = 3251
t = 3261
t = 3271
t = 3281
t = 3291
t = 3301
t = 3311
t = 3321
t = 3331
t = 3341
t = 3351
t = 3361
t = 3371
t = 3381
t = 3391
t = 3401
t = 3411
t = 3421
t = 3431
t = 3441
t = 3451
t = 3461
t = 3471
t = 3481
t = 3491
t = 3501
t = 3511
t = 3521
t = 3531
t = 3541
t = 3551
t = 3561
t = 3571
t = 3581
t = 3591
t = 3601
t = 3611
t = 3621
t = 3631
t = 3641
t = 3651
t = 3661
t = 3671
t = 3681
t = 3691
t = 3701
t = 3711
t = 3721
t = 3731
t = 3741
t = 3751
t = 3761
t = 3771
t = 3781
t = 3791
t = 3801
t = 3811
t = 3821
t = 3831
t = 3841
t = 3851
t = 3861
t = 3871
t = 3881
t = 3891
t = 3901
t = 3911
t = 3921
t = 3931
t = 3941
t = 3951
t = 3961
t = 3971
t = 3981
t = 3991
t = 4001
t = 4011
t = 4021
t = 4031
t = 4041
t = 4051
t = 4061
t = 4071
t = 4081
t = 4091
t = 4101
t = 4111
t = 4121
t = 4131
t = 4141
t = 4151
t = 4161
t = 4171
t = 4181
t = 4191
t = 4201
t = 4211
t = 4221
t = 4231
t = 4241
t = 4251
t = 4261
t = 4271
t = 4281
t = 4291
t = 4301
t = 4311
t = 4321
t = 4331
t = 4341
t = 4351
t = 4361
t = 4371
t = 4381
t = 4391
t = 4401
t = 4411
t = 4421
t = 4431
t = 4441
t = 4451
t = 4461
t = 4471
t = 4481
t = 4491
t = 4501
t = 4511
t = 4521
t = 4531
t = 4541
t = 4551
t = 4561
t = 4571
t = 4581
t = 4591
t = 4601
t = 4611
t = 4621
t = 4631
t = 4641
t = 4651
t = 4661
t = 4671
t = 4681
t = 4691
t = 4701
t = 4711
t = 4721
t = 4731
t = 4741
t = 4751
t = 4761
t = 4771
t = 4781
t = 4791
t = 4801
t = 4811
t = 4821
t = 4831
t = 4841
t = 4851
t = 4861
t = 4871
t = 4881
t = 4891
t = 4901
t = 4911
t = 4921
t = 4931
t = 4941
t = 4951
t = 4961
t = 4971
t = 4981
t = 4991
t = 5001
t = 5011
t = 5021
t = 5031
t = 5041
t = 5051
t = 5061
t = 5071
t = 5081
t = 5091
t = 5101
t = 5111
t = 5121
t = 5131
t = 5141
t = 5151
t = 5161
t = 5171
t = 5181
t = 5191
t = 5201
t = 5211
t = 5221
t = 5231
t = 5241
t = 5251
t = 5261
t = 5271
t = 5281
t = 5291
t = 5301
t = 5311
t = 5321
t = 5331
t = 5341
t = 5351
t = 5361
t = 5371
t = 5381
t = 5391
t = 5401
t = 5411
t = 5421
t = 5431
t = 5441
t = 5451
t = 5461
t = 5471
t = 5481
t = 5491
t = 5501
t = 5511
t = 5521
t = 5531
t = 5541
t = 5551
t = 5561
t = 5571
t = 5581
t = 5591
t = 5601
t = 5611
t = 5621
t = 5631
t = 5641
t = 5651
t = 5661
t = 5671
t = 5681
t = 5691
t = 5701
t = 5711
t = 5721
t = 5731
t = 5741
t = 5751
t = 5761
t = 5771
t = 5781
t = 5791
t = 5801
t = 5811
t = 5821
t = 5831
t = 5841
t = 5851
t = 5861
t = 5871
t = 5881
t = 5891
t = 5901
t = 5911
t = 5921
t = 5931
t = 5941
t = 5951
t = 5961
t = 5971
t = 5981
t = 5991
t = 6001
t = 6011
t = 6021
t = 6031
t = 6041
t = 6051
t = 6061
t = 6071
t = 6081
t = 6091
t = 6101
t = 6111
t = 6121
t = 6131
t = 6141
t = 6151
t = 6161
t = 6171
t = 6181
t = 6191
t = 6201
t = 6211
t = 6221
t = 6231
t = 6241
t = 6251
t = 6261
t = 6271
t = 6281
t = 6291
t = 6301
t = 6311
t = 6321
t = 6331
t = 6341
t = 6351
t = 6361
t = 6371
t = 6381
t = 6391
t = 6401
t = 6411
t = 6421
t = 6431
t = 6441
t = 6451
t = 6461
t = 6471
t = 6481
t = 6491
t = 6501
t = 6511
t = 6521
t = 6531
t = 6541
t = 6551
t = 6561
t = 6571
t = 6581
t = 6591
t = 6601
t = 6611
t = 6621
t = 6631
t = 6641
t = 6651
t = 6661
t = 6671
t = 6681
t = 6691
t = 6701
t = 6711
t = 6721
t = 6731
t = 6741
t = 6751
t = 6761
t = 6771
t = 6781
t = 6791
t = 6801
t = 6811
t = 6821
t = 6831
t = 6841
t = 6851
t = 6861
t = 6871
t = 6881
t = 6891
t = 6901
t = 6911
t = 6921
t = 6931
t = 6941
t = 6951
t = 6961
t = 6971
t = 6981
t = 6991
t = 7001
t = 7011
t = 7021
t = 7031
t = 7041
t = 7051
t = 7061
t = 7071
t = 7081
t = 7091
t = 7101
t = 7111
t = 7121
t = 7131
t = 7141
t = 7151
t = 7161
t = 7171
t = 7181
t = 7191
t = 7201
t = 7211
t = 7221
t = 7231
t = 7241
t = 7251
t = 7261
t = 7271
t = 7281
t = 7291
t = 7301
t = 7311
t = 7321
t = 7331
t = 7341
t = 7351
t = 7361
t = 7371
t = 7381
t = 7391
t = 7401
t = 7411
t = 7421
t = 7431
t = 7441
t = 7451
t = 7461
t = 7471
t = 7481
t = 7491
t = 7501
t = 7511
t = 7521
t = 7531
t = 7541
t = 7551
t = 7561
t = 7571
t = 7581
t = 7591
t = 7601
t = 7611
t = 7621
t = 7631
t = 7641
t = 7651
t = 7661
t = 7671
t = 7681
t = 7691
t = 7701
t = 7711
t = 7721
t = 7731
t = 7741
t = 7751
t = 7761
t = 7771
t = 7781
t = 7791
t = 7801
t = 7811
t = 7821
t = 7831
t = 7841
t = 7851
t = 7861
t = 7871
t = 7881
t = 7891
t = 7901
t = 7911
t = 7921
t = 7931
t = 7941
t = 7951
t = 7961
t = 7971
t = 7981
t = 7991
t = 8001
t = 8011
t = 8021
t = 8031
t = 8041
t = 8051
t = 8061
t = 8071
t = 8081
t = 8091
t = 8101
t = 8111
t = 8121
t = 8131
t = 8141
t = 8151
t = 8161
t = 8171
t = 8181
t = 8191
t = 8201
t = 8211
t = 8221
t = 8231
t = 8241
t = 8251
t = 8261
t = 8271
t = 8281
t = 8291
t = 8301
t = 8311
t = 8321
t = 8331
t = 8341
t = 8351
t = 8361
t = 8371
t = 8381
t = 8391
t = 8401
t = 8411
t = 8421
t = 8431
t = 8441
t = 8451
t = 8461
t = 8471
t = 8481
t = 8491
t = 8501
t = 8511
t = 8521
t = 8531
t = 8541
t = 8551
t = 8561
t = 8571
t = 8581
t = 8591
t = 8601
t = 8611
t = 8621
t = 8631
t = 8641
t = 8651
t = 8661
t = 8671
t = 8681
t = 8691
t = 8701
t = 8711
t = 8721
t = 8731
t = 8741
t = 8751
t = 8761
t = 8771
t = 8781
t = 8791
t = 8801
t = 8811
t = 8821
t = 8831
t = 8841
t = 8851
t = 8861
t = 8871
t = 8881
t = 8891
t = 8901
t = 8911
t = 8921
t = 8931
t = 8941
t = 8951
t = 8961
t = 8971
t = 8981
t = 8991
t = 9001
t = 9011
t = 9021
t = 9031
t = 9041
t = 9051
t = 9061
t = 9071
t = 9081
t = 9091
t = 9101
t = 9111
t = 9121
t = 9131
t = 9141
t = 9151
t = 9161
t = 9171
t = 9181
t = 9191
t = 9201
t = 9211
t = 9221
t = 9231
t = 9241
t = 9251
t = 9261
t = 9271
t = 9281
t = 9291
t = 9301
t = 9311
t = 9321
t = 9331
t = 9341
t = 9351
t = 9361
t = 9371
t = 9381
t = 9391
t = 9401
t = 9411
t = 9421
t = 9431
t = 9441
t = 9451
t = 9461
t = 9471
t = 9481
t = 9491
t = 9501
t = 9511
t = 9521
t = 9531
t = 9541
t = 9551
t = 9561
t = 9571
t = 9581
t = 9591
t = 9601
t = 9611
t = 9621
t = 9631
t = 9641
t = 9651
t = 9661
t = 9671
t = 9681
t = 9691
t = 9701
t = 9711
t = 9721
t = 9731
t = 9741
t = 9751
t = 9761
t = 9771
t = 9781
t = 9791
t = 9801
t = 9811
t = 9821
t = 9831
t = 9841
t = 9851
t = 9861
t = 9871
t = 9881
t = 9891
t = 9901
t = 9911
t = 9921
t = 9931
t = 9941
t = 9951
t = 9961
t = 9971
t = 9981
t = 9991

head(compared)
#> # A tibble: 6 × 4
#> # Groups:   fish_type [1]
#>       t fish_type     mbp_n prop_res
#>   <dbl> <chr>         <dbl>    <dbl>
#> 1     1 MRH Steelhead     3    0.266
#> 2     1 MRH Steelhead    18    0.721
#> 3     1 MRH Steelhead    33    0.801
#> 4     1 MRH Steelhead    48    0.830
#> 5     1 MRH Steelhead    63    0.824
#> 6     1 MRH Steelhead    78    0.823
residence_plot(compared, var_groups = "fish_type", time_unit = "secs")
#> Warning: Transformation introduced infinite values in continuous y-axis

# NOTE: The curves last longer than the longest time! This should indicate we
# should add more times to test, and may need shorter intervals of n.

# Renormalized Sum of Squares
rSSR <- renorm_SSR(compared, var_groups = "fish_type")

head(rSSR)
#> # A tibble: 6 × 5
#> # Groups:   fish_type [1]
#>   fish_type     mbp_n    SSR     n      rSSR
#>   <chr>         <dbl>  <dbl> <int>     <dbl>
#> 1 MRH Steelhead     3 1.17    1000 0.00117  
#> 2 MRH Steelhead    18 0.457   1000 0.000457 
#> 3 MRH Steelhead    33 0.148   1000 0.000148 
#> 4 MRH Steelhead    48 0.0108  1000 0.0000108
#> 5 MRH Steelhead    63 0.0635  1000 0.0000635
#> 6 MRH Steelhead    78 0.0741  1000 0.0000741

# Thresholds for 99% and 99.5% of total range
thresh <- telemetR::conv_thresholds(rSSR, var_groups = "fish_type", 
                                    thresh_levels = c(0.01,0.005))
optimums <- opt_mbp(rSSR, thresh)

rSSR_plot(rSSR, optimums, var_groups = "fish_type")
#> Warning: Removed 6 rows containing missing values (`geom_line()`).

#> Warning: Transformation introduced infinite values in continuous y-axis
#> Warning: Transformation introduced infinite values in continuous y-axis
#> Transformation introduced infinite values in continuous y-axis
#> `geom_smooth()` using formula = 'y ~ x'
#> Warning: Removed 99 rows containing non-finite values (`stat_smooth()`).

# Note: This would be a bad choice of maximum blanking period. We have not yet 
# reached convergence

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.