The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
teal
application to use scatter plot matrix with
various datasets typesThis vignette will guide you through the four parts to create a
teal
application using various types of datasets using the
scatter plot matrix module tm_g_scatterplotmatrix()
:
app
variablelibrary(teal.modules.general) # used to create the app
library(dplyr) # used to modify data sets
Inside this app 4 datasets will be used
ADSL
A wide data set with subject dataADRS
A long data set with response data for subjects at
different time points of the studyADTTE
A long data set with time to event dataADLB
A long data set with lab measurements for each
subject<- teal_data()
data <- within(data, {
data <- teal.modules.general::rADSL %>%
ADSL mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1))
<- teal.modules.general::rADRS
ADRS <- teal.modules.general::rADTTE
ADTTE <- teal.modules.general::rADLB %>%
ADLB mutate(CHGC = as.factor(case_when(
< 1 ~ "N",
CHG > 1 ~ "P",
CHG TRUE ~ "-"
)))
})<- c("ADSL", "ADRS", "ADTTE", "ADLB")
datanames datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]
app
variableThis is the most important section. We will use the
teal::init()
function to create an app. The data will be
handed over using teal.data::teal_data()
. The app itself
will be constructed by multiple calls of
tm_g_scatterplotmatrix()
using different combinations of
data sets.
# configuration for the single wide dataset
<- tm_g_scatterplotmatrix(
mod1 label = "Single wide dataset",
variables = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variables:",
choices = variable_choices(data[["ADSL"]]),
selected = c("AGE", "RACE", "SEX", "BMRKR1", "BMRKR2"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
)
)
)
# configuration for the one long datasets
<- tm_g_scatterplotmatrix(
mod2 "One long dataset",
variables = data_extract_spec(
dataname = "ADTTE",
select = select_spec(
choices = variable_choices(data[["ADTTE"]], c("AVAL", "BMRKR1", "BMRKR2")),
selected = c("AVAL", "BMRKR1", "BMRKR2"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE,
label = "Select variables:"
)
)
)
# configuration for the two long datasets
<- tm_g_scatterplotmatrix(
mod3 label = "Two long datasets",
variables = list(
data_extract_spec(
dataname = "ADRS",
select = select_spec(
label = "Select variables:",
choices = variable_choices(data[["ADRS"]]),
selected = c("AVAL", "AVALC"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE,
),filter = filter_spec(
label = "Select endpoints:",
vars = c("PARAMCD", "AVISIT"),
choices = value_choices(data[["ADRS"]], c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")),
selected = "OVRINV - SCREENING",
multiple = FALSE
)
),data_extract_spec(
dataname = "ADTTE",
select = select_spec(
label = "Select variables:",
choices = variable_choices(data[["ADTTE"]]),
selected = c("AVAL", "CNSR"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
),filter = filter_spec(
label = "Select parameters:",
vars = "PARAMCD",
choices = value_choices(data[["ADTTE"]], "PARAMCD", "PARAM"),
selected = "OS",
multiple = TRUE
)
)
)
)
# initialize the app
<- init(
app data = data,
modules = modules(
modules(
label = "Scatterplot matrix",
mod1,
mod2,
mod3
)
) )
A simple shiny::shinyApp()
call will let you run the
app. Note that app is only displayed when running this code inside an
R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.