The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
A subset of invasive breast carcinoma data from primary tumor tissue. See ?tcga
for more information on loading the full dataset or metadata.
library(tcgaViz)
library(ggplot2)
data(tcga)
head(tcga$genes)
#> # A tibble: 6 x 2
#> sample ICOS
#> <chr> <dbl>
#> 1 TCGA-3C-AAAU-01 1.25
#> 2 TCGA-A2-A04Q-01 7.79
#> 3 TCGA-A2-A0T4-01 4.97
#> 4 TCGA-A8-A08S-01 3.69
#> 5 TCGA-A8-A09B-01 2.55
#> 6 TCGA-A8-A0AD-01 3.72
head(tcga$cells$Cibersort_ABS)
#> # A tibble: 6 x 24
#> sample study B_cell_naive B_cell_memory B_cell_plasma T_cell_CD8.
#> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 TCGA-3C-AAAU-01 BRCA 0 0.0221 0.0192 0.0129
#> 2 TCGA-A2-A04Q-01 BRCA 0.0274 0.0249 0.0236 0.118
#> 3 TCGA-A2-A0T4-01 BRCA 0.0167 0 0.0159 0.0432
#> 4 TCGA-A8-A08S-01 BRCA 0 0.00425 0 0.0217
#> 5 TCGA-A8-A09B-01 BRCA 0.0146 0 0.00612 0.0256
#> 6 TCGA-A8-A0AD-01 BRCA 0.000919 0.000797 0.00290 0
#> # … with 18 more variables: T_cell_CD4._naive <dbl>,
#> # T_cell_CD4._memory_resting <dbl>, T_cell_CD4._memory_activated <dbl>,
#> # T_cell_follicular_helper <dbl>, T_cell_regulatory_.Tregs. <dbl>,
#> # T_cell_gamma_delta <dbl>, NK_cell_resting <dbl>, NK_cell_activated <dbl>,
#> # Monocyte <dbl>, Macrophage_M0 <dbl>, Macrophage_M1 <dbl>,
#> # Macrophage_M2 <dbl>, Myeloid_dendritic_cell_resting <dbl>,
#> # Myeloid_dendritic_cell_activated <dbl>, Mast_cell_activated <dbl>,
#> # Mast_cell_resting <dbl>, Eosinophil <dbl>, Neutrophil <dbl>
And perform a significance of a Wilcoxon adjusted test according to the expression level (high or low) of a selected gene.
<- convert2biodata(
df algorithm = "Cibersort_ABS",
disease = "breast invasive carcinoma",
tissue = "Primary Tumor",
gene_x = "ICOS"
)<- calculate_pvalue(df))
(stats #> Breast Invasive Carcinoma (BRCA; Primary Tumor)
#> Wilcoxon-Mann-Whitney test with Benjamini & Hochberg correction (n_low = 16; n_high = 14).
#> # A tibble: 6 x 9
#> `Cell type` `Average(High)` `Average(Low)` `SD(High)` `SD(Low)`
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 Macrophage_M1 0.0454 0.00943 0.0328 0.0116
#> 2 Macrophage_M2 0.109 0.0697 0.0321 0.0368
#> 3 T_cell_CD4._memory_resting 0.0504 0.0122 0.0377 0.0124
#> 4 T_cell_CD8. 0.0498 0.0127 0.0387 0.00934
#> 5 T_cell_follicular_helper 0.0352 0.0119 0.0259 0.00691
#> 6 T_cell_gamma_delta 0.00823 0.000956 0.0101 0.00258
#> # … with 4 more variables: Average(High - Low) <dbl>, P-value <dbl>,
#> # P-value adjusted <dbl>, Significance <chr>
plot(df, stats = stats)
With ggplot2::theme() expressions.
<- convert2biodata(
(df algorithm = "Cibersort_ABS",
disease = "breast invasive carcinoma",
tissue = "Primary Tumor",
gene_x = "ICOS",
stat = "quantile"
))#> # A tibble: 352 x 3
#> high cell_type value
#> * <fct> <fct> <dbl>
#> 1 25% B_cell_naive 0.00001
#> 2 75% B_cell_naive 0.0274
#> 3 25% B_cell_naive 0.0146
#> 4 75% B_cell_naive 0.0112
#> 5 25% B_cell_naive 0.0141
#> 6 25% B_cell_naive 0.00546
#> 7 75% B_cell_naive 0.0289
#> 8 75% B_cell_naive 0.00376
#> 9 25% B_cell_naive 0.00001
#> 10 75% B_cell_naive 0.00118
#> # … with 342 more rows
<- calculate_pvalue(
(stats
df,method_test = "t_test",
method_adjust = "bonferroni",
p_threshold = 0.01
))#> Breast Invasive Carcinoma (BRCA; Primary Tumor)
#> Student's t-test with bonferroni correction (n_low = 8; n_high = 8).
#> # A tibble: 1 x 9
#> `Cell type` `Average(75%)` `Average(25%)` `SD(75%)` `SD(25%)` `Average(75% - …
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Macrophage… 0.117 0.0456 0.0274 0.0216 0.0719
#> # … with 3 more variables: P-value <dbl>, P-value adjusted <dbl>,
#> # Significance <chr>
plot(
df,stats = stats,
type = "boxplot",
dots = TRUE,
xlab = "Expression level of the 'ICOS' gene by cell type",
ylab = "Percent of relative abundance\n(from the Cibersort_ABS algorithm)",
title = toupper("Differential analysis of immune cell type abundance
based on RNASeq gene-level expression from The Cancer Genome Atlas"),
axis.text.y = element_text(size = 8, hjust = 0.5),
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(size = , face = "italic", hjust = 0.5),
draw = FALSE
+ labs(
) subtitle = paste("Breast Invasive Carcinoma (BRCA; Primary Tumor):",
"Student's t-test with Bonferroni (P < 0.01)")
)
#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.3.3 tcgaViz_1.0.2
#>
#> loaded via a namespace (and not attached):
#> [1] fs_1.5.0 usethis_2.0.1 httr_1.4.2
#> [4] rprojroot_2.0.2 tools_4.0.5 backports_1.2.1
#> [7] bslib_0.2.5 utf8_1.2.1 R6_2.5.0
#> [10] DT_0.18 lazyeval_0.2.2 colorspace_2.0-1
#> [13] withr_2.4.2 tidyselect_1.1.1 curl_4.3.1
#> [16] compiler_4.0.5 cli_2.5.0 xml2_1.3.2
#> [19] shinyjs_2.0.0 desc_1.3.0 plotly_4.9.3
#> [22] sass_0.4.0 scales_1.1.1 readr_1.4.0
#> [25] stringr_1.4.0 digest_0.6.27 shinyFeedback_0.3.0
#> [28] foreign_0.8-81 rmarkdown_2.8 rio_0.5.26
#> [31] pkgconfig_2.0.3 htmltools_0.5.1.1 attempt_0.3.1
#> [34] highr_0.9 fastmap_1.1.0 htmlwidgets_1.5.3
#> [37] rlang_0.4.11 readxl_1.3.1 rstudioapi_0.13
#> [40] shiny_1.6.0 farver_2.1.0 jquerylib_0.1.4
#> [43] generics_0.1.0 jsonlite_1.7.2 dplyr_1.0.6
#> [46] zip_2.1.1 car_3.0-10 config_0.3.1
#> [49] magrittr_2.0.1 Rcpp_1.0.6 munsell_0.5.0
#> [52] fansi_0.4.2 abind_1.4-5 lifecycle_1.0.0
#> [55] stringi_1.6.1 yaml_2.2.1 carData_3.0-4
#> [58] plyr_1.8.6 grid_4.0.5 promises_1.2.0.1
#> [61] forcats_0.5.1 crayon_1.4.1 haven_2.4.1
#> [64] hms_1.0.0 knitr_1.33 pillar_1.6.1
#> [67] ggpubr_0.4.0 ggsignif_0.6.1 reshape2_1.4.4
#> [70] pkgload_1.2.1 glue_1.4.2 evaluate_0.14
#> [73] golem_0.3.1 data.table_1.14.0 remotes_2.3.0
#> [76] vctrs_0.3.8 httpuv_1.6.1 testthat_3.0.2
#> [79] cellranger_1.1.0 gtable_0.3.0 purrr_0.3.4
#> [82] tidyr_1.1.3 xfun_0.23 openxlsx_4.2.3
#> [85] mime_0.10 xtable_1.8-4 broom_0.7.6
#> [88] roxygen2_7.1.1 rstatix_0.7.0 later_1.2.0
#> [91] viridisLite_0.4.0 dockerfiler_0.1.3 tibble_3.1.2
#> [94] ellipsis_0.3.2
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.