The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The taylor package comes with it’s own class of color palettes, inspired by the work of Josiah Parry in the cpcinema package.
taylor uses vctrs to create a special vector class of color palettes that can be used to create and visualize palettes. We can create a palette using the color_palette()
function. We only have to pass a vector of hexadecimal values or valid R color (from colors()
), and a palette is created that will print a preview of the colors.
library(taylor)
my_pal <- color_palette(c("firebrick", "turquoise", "#0051ba"))
my_pal
#> <color_palette[3]>
#> firebrick
#> turquoise
#> #0051ba
We can also use color_palette()
on an existing palette to interpolate additional values, by specifying that we want more colors than were originally specified.
my_big_pal <- color_palette(my_pal, n = 10)
my_big_pal
#> <color_palette[10]>
#> #B22222
#> #984C48
#> #7F766F
#> #66A096
#> #4CCABC
#> #38D0CD
#> #2AB0C8
#> #1C90C3
#> #0E70BE
#> #0051BA
Similarly, if we have a large color palette, we can select just a few representative colors.
my_small_pal <- color_palette(my_big_pal, n = 5)
my_small_pal
#> <color_palette[5]>
#> #B22222
#> #7F766F
#> #4CCABC
#> #2AB0C8
#> #0051BA
The taylor package comes with a few palettes built-in, based on Taylor Swift’s album covers. They can be viewed using taylor::album_palettes
.
album_palettes
#> $taylor_swift
#> <color_palette[5]>
#> #1D4737
#> #81A757
#> #1BAEC6
#> #523d28
#> #E7DBCC
#>
#> $fearless
#> <color_palette[5]>
#> #6E4823
#> #976F34
#> #CBA863
#> #ECD59F
#> #E1D4C2
#>
#> $fearless_tv
#> <color_palette[5]>
#> #624324
#> #A47F45
#> #CAA462
#> #C5AA7C
#> #EEDBA9
#>
#> $speak_now
#> <color_palette[5]>
#> #2E1924
#> #6C3127
#> #833C63
#> #D1A0C7
#> #F5E8E2
#>
#> $speak_now_tv
#> <color_palette[5]>
#> #2A122C
#> #4a2454
#> #72325F
#> #874886
#> #96689A
#>
#> $red
#> <color_palette[5]>
#> #201F39
#> #A91E47
#> #7E6358
#> #B0A49A
#> #DDD8C9
#>
#> $red_tv
#> <color_palette[5]>
#> #400303
#> #731803
#> #967862
#> #B38468
#> #C7C5B6
#>
#> $`1989`
#> <color_palette[5]>
#> #5D4E5D
#> #846578
#> #92573C
#> #C6B69C
#> #D8D8CF
#>
#> $`1989_tv`
#> <color_palette[5]>
#> #487398
#> #659BBB
#> #8BB5D2
#> #AFC5D4
#> #E4DFD3
#>
#> $reputation
#> <color_palette[5]>
#> #2C2C2C
#> #515151
#> #5B5B5B
#> #6E6E6E
#> #B9B9B9
#>
#> $lover
#> <color_palette[5]>
#> #76BAE0
#> #8C4F66
#> #B8396B
#> #EBBED3
#> #FFF5CC
#>
#> $folklore
#> <color_palette[5]>
#> #3E3E3E
#> #545454
#> #5C5C5C
#> #949494
#> #EBEBEB
#>
#> $evermore
#> <color_palette[5]>
#> #160E10
#> #421E18
#> #D37F55
#> #85796D
#> #E0D9D7
#>
#> $midnights
#> <color_palette[5]>
#> #121D27
#> #5A658B
#> #6F86A2
#> #85A7BA
#> #AA9EB6
#>
#> $tortured_poets
#> <color_palette[5]>
#> #1C160F
#> #3F3824
#> #635B3A
#> #ADA795
#> #F7F4F0
Or we can access a single palette.
album_palettes$fearless_tv
#> <color_palette[5]>
#> #624324
#> #A47F45
#> #CAA462
#> #C5AA7C
#> #EEDBA9
Also included is a palette that includes one representative color from each album, taylor::album_compare
.
album_compare
#> <color_palette[15]>
#> taylor_swift
#> fearless
#> fearless_tv
#> speak_now
#> speak_now_tv
#> red
#> red_tv
#> 1989
#> 1989_tv
#> reputation
#> lover
#> folklore
#> evermore
#> midnights
#> tortured_poets
The taylor package comes with a set of functions built in for plotting in ggplot2 with the album palettes. For example, we can use scale_fill_taylor_c()
to create a continuous scale based on one of the album palettes. For more details on how to use the scale functions included in taylor, check out vignette("plotting")
.
library(ggplot2)
p <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +
geom_tile() +
theme_minimal()
p + scale_fill_taylor_c(album = "Fearless (Taylor's Version)")
You can also use your custom palettes with ggplot2. For example, we can create a palette of greens, and then use ggplot2::scale_fill_gradientn()
or ggplot2::scale_color_gradientn()
to use the palette.
green_pal <- color_palette(c("#E5F5E0", "#A1D99B", "#31A354"))
green_pal
#> <color_palette[3]>
#> #E5F5E0
#> #A1D99B
#> #31A354
ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +
geom_tile() +
scale_fill_gradientn(colors = green_pal) +
theme_minimal()
Finally, if we have a discrete scale, we can use ggplot2::scale_fill_manual()
or ggplot2::scale_color_manual()
. Here, we use the palmerpenguins to map our palette to the species of penguin.
library(palmerpenguins)
penguin_pal <- color_palette(c(Adelie = "firebrick",
Chinstrap = "goldenrod",
Gentoo = "navy"))
penguin_pal
#> <color_palette[3]>
#> Adelie
#> Chinstrap
#> Gentoo
ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point(aes(shape = species, color = species), size = 3) +
scale_color_manual(values = penguin_pal) +
theme_minimal()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.