The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

beta Diversity

N. Frerebeau

2024-09-05

\(\beta\)-diversity measures how different local systems are from one another (Moreno and Rodríguez 2010).

## Install extra packages (if needed)
# install.packages("folio") # Datasets

## Load packages
library(tabula)

## Ceramic data from Lipo et al. 2015
data("mississippi", package = "folio")

1. Turnover

The following methods can be used to ascertain the degree of turnover in taxa composition along a gradient on qualitative (presence/absence) data. This assumes that the order of the matrix rows (from 1 to \(m\)) follows the progression along the gradient/transect.

We denote the \(m \times p\) incidence matrix by \(X = \left[ x_{ij} \right] ~\forall i \in \left[ 1,m \right], j \in \left[ 1,p \right]\) and the \(p \times p\) corresponding co-occurrence matrix by \(Y = \left[ y_{ij} \right] ~\forall i,j \in \left[ 1,p \right]\), with row and column sums:

`sR\begin{align} x_{i \cdot} = \sum_{j = 1}^{p} x_{ij} && x_{\cdot j} = \sum_{i = 1}^{m} x_{ij} && x_{\cdot \cdot} = \sum_{j = 1}^{p} \sum_{i = 1}^{m} x_{ij} && \forall x_{ij} \in \lbrace 0,1 \rbrace \

y_{i \cdot} = \sum_{j \geqslant i}^{p} y_{ij} && y_{\cdot j} = \sum_{i \leqslant j}^{p} y_{ij} && y_{\cdot \cdot} = \sum_{i = 1}^{p} \sum_{j \geqslant i}^{p} y_{ij} && \forall y_{ij} \in \lbrace 0,1 \rbrace \end{align}sR`

Measure Reference
$$ \beta_W = \frac{S}{\alpha} - 1 $$ Whittaker (1960)
$$ \beta_C = \frac{g(H) + l(H)}{2} - 1 $$ Cody (1975)
$$ \beta_R = \frac{S^2}{2 y_{\cdot \cdot} + S} - 1 $$ Routledge (1977)
$$ \beta_I = \log x_{\cdot \cdot} - \frac{\sum_{j = 1}^{p} x_{\cdot j} \log x_{\cdot j}}{x_{\cdot \cdot}} - \frac{\sum_{i = 1}^{m} x_{i \cdot} \log x_{i \cdot}}{x_{\cdot \cdot}} $$ Routledge (1977)
$$ \beta_E = \exp(\beta_I) - 1 $$ Routledge (1977)
$$ \beta_T = \frac{g(H) + l(H)}{2\alpha} $$ Wilson & Shmida (1984)
Table: Turnover measures.

Where:

2. Similarity

Similarity between two samples \(a\) and \(b\) or between two types \(x\) and \(y\) can be measured as follow.

These indices provide a scale of similarity from \(0\)-$1$ where \(1\) is perfect similarity and \(0\) is no similarity, with the exception of the Brainerd-Robinson index which is scaled between \(0\) and \(200\).

Measure Reference
$$ C_J = \frac{o_j}{S_a + S_b - o_j} $$ Jaccard
$$ C_S = \frac{2 \times o_j}{S_a + S_b} $$ Sorenson
Table: Qualitative similarity measures (between samples).
Measure Reference
$$ C_{BR} = 200 - \sum_{j = 1}^{S} \left \frac{a_j \times 100}{\sum_{j = 1}^{S} a_j} - \frac{b_j \times 100}{\sum_{j = 1}^{S} b_j} \right
$$ C_N = \frac{2 \sum_{j = 1}^{S} \min(a_j, b_j)}{N_a + N_b} $$ Bray & Curtis (1957), Sorenson
$$ C_{MH} = \frac{2 \sum_{j = 1}^{S} a_j \times b_j}{(\frac{\sum_{j = 1}^{S} a_j^2}{N_a^2} + \frac{\sum_{j = 1}^{S} b_j^2}{N_b^2}) \times N_a \times N_b} $$ Morisita-Horn
Table: Quantitative similarity measures (between samples).
Measure Reference
$$ C_{Bi} = \frac{o_i - N \times p}{\sqrt{N \times p \times (1 - p)}} $$ Kintigh (2006)
Table: Quantitative similarity measures (between types).

Where:

## Brainerd-Robinson (similarity between assemblages)
BR <- similarity(mississippi, method = "brainerd")
plot_spot(BR, col = khroma::colour("YlOrBr")(12))
plot of chunk similarity

plot of chunk similarity


## Binomial co-occurrence (similarity between types)
BI <- similarity(mississippi, method = "binomial")
plot_spot(BI, col = khroma::colour("PRGn")(12))
plot of chunk similarity

plot of chunk similarity

3. References

Brainerd, G. W. 1951. The Place of Chronological Ordering in Archaeological Analysis. American Antiquity, 16(4), 301-313. DOI: 10.2307/276979.

Bray, J. R. & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. DOI: 10.2307/1942268.

Cody, M. L. (1975). Towards a Theory of Continental Species Diversity: Bird Distributions Over Mediterranean Habitat Gradients. In M. L. Cody & J. M. Diamond (Eds.), Ecology and Evolution of Communities, 214-257. Cambridge, MA: Harvard University Press.

Kintigh, K. (2006). Ceramic Dating and Type Associations. In J. Hantman & R. Most (Eds.), Managing Archaeological Data: Essays in Honor of Sylvia W. Gaines, 17–26. Anthropological Research Paper 57. Tempe, AZ: Arizona State University. DOI: 10.6067/XCV8J38QSS.

Moreno, C. E. & Rodríguez, P. (2010). A Consistent Terminology for Quantifying Species Diversity? Oecologia, 163(2), 279-782. DOI: 10.1007/s00442-010-1591-7.

Robinson, W. S. (1951). A Method for Chronologically Ordering Archaeological Deposits. American Antiquity, 16(4), 293-301. DOI: 10.2307/276978.

Routledge, R. D. (1977). On Whittaker’s Components of Diversity. Ecology, 58(5), 1120-1127. DOI: 10.2307/1936932.

Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279-338. DOI: 10.2307/1943563..

Wilson, M. V. & Shmida, A. (1984). Measuring Beta Diversity with Presence-Absence Data. The Journal of Ecology, 72(3), 1055-1064. DOI: 10.2307/2259551.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.