The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The ‘survivalmodels’ package

What is the ‘survivalmodels’ package?

The survivalmodels package implements neural networks from the Python packages pycox. Importantly, this a lighter but CRAN-compatible version of the ‘survivalmodels’ package proposed by Raphael Sonabend based on the version 0.1.19. The complete and updated version is available at this link.

Basic Usage

# load dependencies
library(survival)

train <- simsurvdata(200)

# Fit the survival neural network
fit <- deepsurv(Surv(time, status) ~ ., data = train, frac = 0.3, activation = "relu",
    num_nodes = c(4L, 8L, 4L, 2L), dropout = 0.1, early_stopping = TRUE, epochs = 100L,
    batch_size = 32L)

# Return survivals for two independent individuals
test <- simsurvdata(1)
predict(fit, newdata = test)
#>   3.33999991416931 3.34299993515015 3.38000011444092 3.38899993896484
#> 0           0.9929           0.9858           0.9786           0.9715
#>   3.43600010871887 3.45600008964539 3.47300004959106 3.48600006103516
#> 0           0.9644           0.9573           0.9502           0.9431
#>   3.49499988555908 3.49900007247925 3.50300002098083 3.50799989700317
#> 0           0.9359           0.9218           0.9146           0.9075
#>   3.52600002288818 3.53500008583069 3.53699994087219 3.54699993133545
#> 0           0.9004           0.8933           0.8862           0.8791
#>   3.58899998664856 4.65999984741211 4.68200016021729 4.79400014877319
#> 0           0.8719           0.8648           0.8577           0.8506
#>   4.84000015258789 4.89699983596802 4.93200016021729 4.93699979782104
#> 0           0.8435           0.8363           0.8292           0.8221
#>   4.94500017166138 4.95900011062622 4.96199989318848 4.98600006103516
#> 0            0.815           0.8079           0.8008           0.7936
#>   4.98899984359741 4.99499988555908 4.99700021743774 5.00400018692017
#> 0           0.7865           0.7794           0.7723           0.7652
#>   5.00799989700317 5.01000022888184 5.02299976348877 5.02600002288818
#> 0           0.7581           0.7439           0.7368           0.7296
#>   5.02799987792969 5.07200002670288 5.18400001525879 5.30700016021729
#> 0           0.7225           0.7154           0.7083           0.7012
#>   5.34200000762939 5.35099983215332 5.35500001907349 5.3600001335144
#> 0           0.6941           0.6869           0.6798          0.6727
#>   5.36100006103516 5.38600015640259 5.39599990844727 5.40999984741211
#> 0           0.6656           0.6585           0.6513           0.6442
#>   5.41300010681152 5.42700004577637 5.42899990081787 5.43400001525879
#> 0           0.6371             0.63           0.6229           0.6158
#>   5.43699979782104 5.44700002670288 5.46700000762939 5.46799993515015
#> 0           0.6086           0.6015           0.5944           0.5733
#>   5.47100019454956 5.47499990463257 5.47700023651123 5.48699998855591
#> 0           0.5662           0.5591           0.5519           0.5378
#>   5.49300003051758 5.49399995803833 5.49499988555908 5.4980001449585
#> 0           0.5307           0.5235           0.5164          0.5093
#>   5.51300001144409 5.53599977493286 5.53800010681152 5.54099988937378
#> 0           0.5022            0.495           0.4809           0.4738
#>   5.54699993133545 5.55000019073486 5.55900001525879 5.56099987030029
#> 0           0.4667           0.4595           0.4524           0.4453
#>   5.56199979782104 5.56400012969971 5.56699991226196 5.57800006866455
#> 0           0.4382            0.431           0.4239           0.4168
#>   5.58500003814697 5.58799982070923 5.59600019454956 5.59700012207031
#> 0           0.4097           0.4025           0.3954           0.3883
#>   6.66099977493286 6.67500019073486 6.69000005722046 6.69099998474121
#> 0           0.3812            0.367           0.3599           0.3528
#>   6.74100017547607 6.77400016784668 6.77600002288818 6.78299999237061
#> 0           0.3457           0.3385           0.3314           0.3243
#>   6.80200004577637 6.80800008773804 6.80999994277954 6.81899976730347
#> 0           0.3172             0.31           0.3029           0.2958
#>   6.86899995803833 6.8769998550415
#> 0           0.2886          0.2886

Python Models

The survivalmodels package implements models from Python using reticulate. In order to use these models, the required Python packages must be installed following with reticulate::py_install. survivalmodels includes a helper function to install the required pycox function (with pytorch if also required). Before running any models in this package, if you have not already installed pycox please run.

install_pycox(pip = TRUE, install_torch = FALSE)

Installation

Install the latest release from CRAN:

install.packages("survivalmodels")

Install the development version from GitHub:

remotes::install_github("RaphaelS1/survivalmodels")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.