The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

surtvep

surtvep is an R package for fitting Cox non-proportional hazards models with time-varying coefficients. Both unpenalized procedures (Newton and proximal Newton) and penalized procedures (P-splines and smoothing splines) are included using B-spline basis functions for estimating time-varying coefficients. For penalized procedures, cross validations, mAIC, TIC or GIC are implemented to select tuning parameters. Utilities for carrying out post-estimation visualization, summarization, point-wise confidence interval and hypothesis testing are also provided.

Introduction

Large-scale time-to-event data derived from national disease registries arise rapidly in medical studies. Detecting and accounting for time-varying effects is particularly important, as time-varying effects have already been reported in the clinical literature. However, there are currently no formal R packages for estimating the time-varying effects without pre-assuming the time-dependent function. Inaccurate pre-assumptions can greatly influence the estimation, leading to unreliable results. To address this issue, we developed a time-varying model using spline terms with penalization that does not require pre-assumption of the true time-dependent function, and implemented it in R.

Our package offers several benefits over traditional methods. Firstly, traditional methods for modeling time-varying survival models often rely on expanding the original data into a repeated measurement format. However, even with moderate sample sizes, this leads to a large and computationally burdensome working dataset. Our package addresses this issue by proposing a computationally efficient Kronecker product-based proximal algorithm, which allows for the evaluation of time-varying effects in large-scale studies. Additionally, our package allows for parallel computing and can handle moderate to large sample sizes more efficiently than current methods.

In our statistical software tutorial, we address a common issue encountered when analyzing data with binary covariates with near-zero variation. For example, in the SEER prostate cancer data, only 0.6% of the 716,553 patients had their tumors regional to the lymph nodes. In such cases, the associated observed information matrix of a Newton-type method may have a minimum eigenvalue close to zero and a large condition number. Inverting this nearly singular matrix can lead to numerical instability and the corresponding Newton updates may be confined within a small neighborhood of the initial value, resulting in estimates that are far from the optimal solutions. To address this problem, our proposed Proximal-Newtown method utilizes a modified Hessian matrix, which allows for accurate estimation in these scenarios.

Installation

Note: This package is still in its early stages of development, so please don’t hesitate to report any problems you may experience.

The package only works for R 4.1.0+.

You can install ‘surtvep’ via:

install.packages("devtools")
install.packages("remotes")
remotes::install_github("UM-KevinHe/surtvep")

We recommand to start with tutorial, as it provides an overview of the package’s usage, including preprocessing, model training, selection of penalization parameters, and post-estimation procedures.

Detailed tutorial

For detailed tutorial and model paramter explaination, please go to here.

Getting Help:

If you encounter any problems or bugs, please contact us at: lfluo@umich.edu, kevinhe@umich.edu, Wenbo.Wu@nyulangone.org

References

[1] Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association, 87(420), 942–951. https://doi.org/10.2307/2290630

[2] Gray, R. J. (1994). Spline-based tests in survival analysis. Biometrics, 50(3), 640–652. https://doi.org/10.2307/2532779

[3] He, K., Zhu, J., Kang, J., & Li, Y. (2022). Stratified Cox models with time-varying effects for national kidney transplant patients: A new blockwise steepest ascent method. Biometrics, 78(3), 1221–1232. https://doi.org/10.1111/biom.13473

[4] Luo, L., He, K., Wu, W., & Taylor, J. M. (2023). Using information criteria to select smoothing parameters when analyzing survival data with time-varying coefficient hazard models. Statistical Methods in Medical Research, in press. https://doi.org/10.1177/09622802231181471

[5] Wu, W., Taylor, J. M., Brouwer, A. F., Luo, L., Kang, J., Jiang, H., & He, K. (2022). Scalable proximal methods for cause-specific hazard modeling with time-varying coefficients. Lifetime Data Analysis, 28 (2), 194–218. https://doi.org/10.1007/s10985-021-09544-2

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.