The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Missing Data for Marked Hawkes Process
Version: 0.2.2
Date: 2025-03-04
Description: Estimation of model parameters for marked Hawkes process. Accounts for missing data in the estimation of the parameters. Technical details found in (Tucker et al., 2019 <doi:10.1016/j.spasta.2018.12.004>).
Imports: interp, extraDistr, Rcpp
License: MIT + file LICENSE
Encoding: UTF-8
SystemRequirements: GNU GSL
NeedsCompilation: yes
URL: https://github.com/sandialabs/stpphawkes
BugReports: https://github.com/sandialabs/stpphawkes/issues
LinkingTo: Rcpp, RcppArmadillo, RcppProgress, RcppGSL
RoxygenNote: 7.3.2
Packaged: 2025-03-10 21:45:47 UTC; jdtuck
Author: J. Derek Tucker [aut, cre], Lyndsay Shand [aut], Stephen Rowe [aut], John Lewis [aut]
Maintainer: J. Derek Tucker <jdtuck@sandia.gov>
Repository: CRAN
Date/Publication: 2025-03-10 22:10:02 UTC

Marked Hawkes Process with Missing Data

Description

A library for estimation of spatio-temporal Hawkes process parameters with missing data support

Author(s)

Maintainer: J. Derek Tucker jdtuck@sandia.gov

Authors:

References

J. D. Tucker, L. Shand, and J. R. Lewis, “Handling Missing Data in Self-Exciting Point Process Models,” Spatial Statistics, vol. 29. pp. 160-176, 2019.

See Also

Useful links:


Calculate area of polynomial

Description

Calculate area of polynomial

Usage

areapl(poly)

Arguments

poly

- matrix describing polynomial

Value

W - area of polynomial


Simulate a homogenous space-time Poisson process

Description

This function simulates a homogenous space-time Poisson process on W, defined by polygon

Usage

homog.STPP(
  mu,
  poly,
  t.region,
  xfrac = 0.1,
  yfrac = 0.1,
  remove = FALSE,
  checkpoly = TRUE,
  showplot = FALSE
)

Arguments

mu

- background parameter

poly

- matrix defining polygon (N x 2)

t.region

- vector of two elements describing time span

xfrac

- x fractional increase of polygon to handle boundary effects (default = .1)

yfrac

- y fractional increase (default = .1)

remove

- remove points outside polygon (default = FALSE)

checkpoly

- check if polygon is proper (default = TRUE)

showplot

- plot points (default = FALSE)

Value

A DataFrame containing x,y,t

Examples

out = homog.STPP(0.5,matrix(c(0,0,1,1,0,1,1,0),ncol=2),c(0,10))  

Calculate intensity function for temporal Hawkes

Description

Calculate intensity function for temporal Hawkes

Usage

intensity_temporal(mu, alpha, beta, times, evalpt)

Arguments

mu

- background parameter

alpha

- alpha parameter

beta

- beta parameter

times

- history of previous times

evalpt

- point to evaluate

Value

lambda - intensity at evalpt


Bayesian Estimation of Spatio-Temporal Hawkes Model Parameters

Description

This function computes the posterior of a spatio-temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_stpp(
  data,
  poly,
  t_max = max(data$t),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE,
  sp_clip = TRUE
)

Arguments

data

- A DataFrame containing x,y,t

poly

- matrix defining polygon (N x 2)

t_max

- maximum time value (default = max(times))

t_mis

- vector of two elements describing missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL', will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

print

- print progress (default = 'TRUE')

sp_clip

- when simulating missing data spatial points, clip spatial region back to observed region (default = 'TRUE')

Details

The default is to estimate the branching structure. The model will also account to missing data if t_mis is provided.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated


Bayesian Estimation of Spatio-Temporal Hawkes Model Parameters with non uniform spatial locations

Description

This function computes the posterior of a spatio-temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_stpp_nonunif(
  data,
  poly,
  t_max = max(data$t),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE,
  sp_clip = TRUE
)

Arguments

data

- A DataFrame containing x,y,t

poly

- matrix defining polygon (N x 2)

t_max

- maximum time value (default = max(times))

t_mis

- vector of two elements describing missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL', will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

print

- print progress (default = 'TRUE')

sp_clip

- when simulating missing data spatial points, clip spatial region back to observed region (default = 'TRUE')

Details

The default is to estimate the branching structure. The model will also account to missing data if t_mis is provided.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated


Bayesian Estimation of Temporal Hawkes Model Parameters

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_temporal(
  times,
  t_max = max(times),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE
)

Arguments

times

- vector of arrival times

t_max

- maximum time value (default = max(times))

t_mis

- Mx2 matrix, mth row contains two elements describing the mth missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL', will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

print

- print progress (default = 'TRUE')

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis is provided.

Branching models specify gamma priors for mu, alpha and beta parameters.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated

Examples


times = simulate_temporal(.5,.1,.5,c(0,10),numeric())
out = mcmc_temporal(times)


Bayesian Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_temporal_catmark(
  times,
  marks,
  t_max = max(times),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  print = TRUE
)

Arguments

times

- vector of arrival times

marks

- vector of marks

t_max

- maximum time value (default = max(times))

t_mis

- Mx2 matrix, mth row contains two elements describing the mth missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL, will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

print

- print progress (default = 'TRUE')

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis is provided.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated


Bayesian Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_temporal_contmark(
  times,
  marks,
  wshape,
  t_max = max(times),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  dist = "Weibull",
  print = TRUE
)

Arguments

times

- vector of arrival times

marks

- vector of continuous marks

wshape

- fixed weibull shape parameter

t_max

- maximum time value (default = max(times))

t_mis

- Mx2 matrix, mth row contains two elements describing the mth missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL', will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

dist

- distribution for marks string (default = "Weibull")

print

- print progress (default = 'TRUE')

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis is provided.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated


Point in polygon

Description

Determines if a point is in a polygon or on a polygon boundary

Usage

pip(x, y, poly)

Arguments

x

- vector of x positions

y

- vector of y positions

poly

- matrix defining polygon (N x 2)

Value

A list containing the x and y coordinates of the points inside the polygon @export


Calculate if points are in the polynomial

Description

Calculate if points are in the polynomial

Usage

ptinpoly(x, y, xp, yp, bb)

Arguments

x

- vector of x coordinates

y

- vector of y coordinates

xp

- vector of x coordinates of polynomial

yp

- vector of y coordinates of polynomial

bb

- matrix of bounding box of polynomial

Value

inout - vector of 1 if point is in polynomial and 0 if not


Simulate homogenous spatio-temporal hawkes model

Description

Simulate homogenous spatio-temporal hawkes model

Usage

simulate_hawkes_stpp(params, poly, t_region, d, history, seed = -1L)

Arguments

params

- list containing params (\mu, a, b, \sigma)

poly

- matrix defining polygon (N x 2)

t_region

- vector of two elements describing time region (e.g., c(0,10))

d

- generate parents on larger polygon by expanded observed polygon by d (default = R::qnorm(.95, 0, sig, 1, 0))

history

- history of process (e.g., numeric())

seed

- set random number seed (default=-1)

Value

A DataFrame containing x,y,t


Simulate inhomogenous spatio-temporal hawkes model

Description

Simulate inhomogenous spatio-temporal hawkes model

Usage

simulate_hawkes_stpp_nonunif(params, poly, t_region, d, history, seed = -1L)

Arguments

params

- list containing params (\mu, a, b, \sigma,\mu x, \mu y, \sigma x, \sigma y )

poly

- matrix defining polygon (N x 2)

t_region

- vector of two elements describing time region (e.g., c(0,10))

d

- generate parents on larger polygon by expanded observed polygon by d (default = R::qnorm(.95, 0, sig, 1, 0))

history

- history of process (e.g., numeric())

seed

- set random number seed (default=-1)

Value

A DataFrame containing x,y,t


Simulates a temporal Hawkes process with an exponential correlation function

Description

Simulates a temporal Hawkes process with an exponential correlation function

Usage

simulate_temporal(mu, alpha, beta, tt, times, seed = -1L)

Arguments

mu

- background parameter

alpha

- \alpha parameter

beta

- \beta parameter

tt

- vector of two elements defining time span (e.g., c(0,10))

times

- history of previous times (e.g., numeric())

seed

- value to seed random number generation (default = -1)

Value

arrivals - vector of arrival times

Examples

    times = simulate_temporal(.5,.1,.5,c(0,10),numeric())

MLE Estimation of Spatio-Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a spatio-temporal exponential decay Hawkes model.

Usage

stpp.mle(data, poly, t_max = max(data$t), initval = NA, print = TRUE)

Arguments

data

- A DataFrame containing x,y, and t

poly

- a matrix defining the polygon

t_max

- maximum time value (default = max(times))

initval

- vector of two elements describing missing time range (default = NA)

print

- print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value


MLE Estimation of Nonuniform Spatio-Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a spatio-temporal exponential decay Hawkes model.

Usage

stpp.mle.nonunif(data, poly, t_max = max(data$t), initval = NA, print = TRUE)

Arguments

data

- A DataFrame containing x,y, and t

poly

- a matrix defining the polygon

t_max

- maximum time value (default = max(times))

initval

- vector of two elements describing missing time range (default = NA)

print

- print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value


MLE Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

Maximum likelihood estimation of the parameters of a temporal exponential decay Hawkes model

Usage

temporal.catmark.mle(t, marks, t_max = max(t), initval = NA, print = TRUE)

Arguments

t

- vector of arrival times

marks

- vector of marks

t_max

- maximum time value (default = max(times))

initval

- initial parameter values for likelihood optimization

print

- print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value


MLE Estimation of Temporal Hawkes Model Parameters

Description

Maximum likelihood estimation of the parameters of a temporal exponential decay Hawkes model

Usage

temporal.mle(t, t_max = max(t), initval = NA, print = TRUE)

Arguments

t

- vector of arrival times

t_max

- maximum time value (default = max(times))

initval

- vector of two elements describing missing time range (default = NA)

print

- print progress (default = TRUE)

Value

A list containing the parameter values and likelihood value

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.