The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The inner() function in the stokes package

Robin K. S. Hankin

inner
function (M) 
{
    ktensor(spray(expand.grid(seq_len(nrow(M)), seq_len(ncol(M))), 
        c(M)))
}

To cite the stokes package in publications, please use Hankin (2022b). Spivak (1965), in a memorable passage, states:

The reader is already familiar with certain tensors, aside from members of \(V^*\). The first example is the inner product \(\left\langle{,}\right\rangle\in{\mathcal J}^2(\mathbb{R}^n)\). On the grounds that any good mathematical commodity is worth generalizing, we define an inner product on \(V\) to be a 2-tensor \(T\) such that \(T\) is symmetric, that is \(T(v,w)=T(w,v)\) for \(v,w\in V\) and such that \(T\) is positive-definite, that is, \(T(v,v) > 0\) if \(v\neq 0\). We distinguish \(\left\langle{,}\right\rangle\) as the usual inner product on \(\mathbb{R}^n\).

- Michael Spivak, 1969 (Calculus on Manifolds, Perseus books). Page 77

Function inner() returns the inner product corresponding to a matrix \(M\). Spivak’s definition requires \(M\) to be positive-definite, but that is not necessary in the package. The inner product of two vectors \(\mathbf{x}\) and \(\mathbf{y}\) is usually written \(\left\langle\mathbf{x},\mathbf{y}\right\rangle\) or \(\mathbf{x}\cdot\mathbf{y}\), but the most general form would be \(\mathbf{x}^TM\mathbf{y}\). Noting that inner products are multilinear, that is \(\left\langle\mathbf{x},a\mathbf{y}+b\mathbf{z}\right\rangle=a\left\langle\mathbf{x},\mathbf{y}\right\rangle + b\left\langle\mathbf{x},\mathbf{z}\right\rangle\) and \(\left\langle a\mathbf{x} + b\mathbf{y},\mathbf{z}\right\rangle=a\left\langle\mathbf{x},\mathbf{z}\right\rangle + b\left\langle\mathbf{y},\mathbf{z}\right\rangle\) we see that the inner product is indeed a multilinear map, that is, a tensor.

We can start with the simplest inner product, the identity matrix:

inner(diag(7))
## A linear map from V^2 to R with V=R^7:
##          val
##  6 6  =    1
##  7 7  =    1
##  5 5  =    1
##  3 3  =    1
##  2 2  =    1
##  4 4  =    1
##  1 1  =    1

Note how the rows of the tensor appear in arbitrary order, as per disordR discipline (Hankin 2022a). Verify:

x <- rnorm(7)
y <- rnorm(7)
V <- cbind(x,y)
LHS <- sum(x*y)
RHS <- as.function(inner(diag(7)))(V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
##      LHS      RHS     diff 
## 5.503805 5.503805 0.000000

Above, we see agreement between \(\mathbf{x}\cdot\mathbf{y}\) calculated directly [LHS] and using inner() [RHS]. A more stringent test would be to use a general matrix:

M <- matrix(rnorm(49),7,7)
f <- as.function(inner(M))
LHS <- quad3.form(M,x,y)
RHS <- f(V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
##      LHS      RHS     diff 
## -3.41066 -3.41066  0.00000

(function quadform::quad3.form() evaluates matrix products efficiently; quad3.form(M,x,y) returns \(x^TMy\)). Above we see agreement, to within numerical precision, of the dot product calculated two different ways: LHS uses quad3.form() and RHS uses inner(). Of course, we would expect inner() to be a homomorphism:

M1 <- matrix(rnorm(49),7,7)
M2 <- matrix(rnorm(49),7,7)
g <- as.function(inner(M1+M2))
LHS <- quad3.form(M1+M2,x,y)
RHS <- g(V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
##       LHS       RHS      diff 
## -5.418253 -5.418253  0.000000

Above we see numerical verification of the fact that \(I(M_1+M_2)=I(M_1)+I(M_2)\), by evaluation at \(\mathbf{x},\mathbf{y}\), again with LHS using direct matrix algebra and RHS using inner(). Now, if the matrix is symmetric the corresponding inner product should also be symmetric:

h <- as.function(inner(M1 + t(M1))) # send inner() a symmetric matrix
LHS <- h(V)
RHS <- h(V[,2:1])
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
##       LHS       RHS      diff 
## -22.52436 -22.52436   0.00000

Above we see that \(\mathbf{x}^TM\mathbf{y} = \mathbf{y}^TM\mathbf{x}\). Further, a positive-definite matrix should return a positive quadratic form:

M3 <- crossprod(matrix(rnorm(56),8,7))  # 7x7 pos-def matrix
as.function(inner(M3))(kronecker(rnorm(7),t(c(1,1))))>0  # should be TRUE
## [1] TRUE

Above we see the second line evaluating \(\mathbf{x}^TM\mathbf{x}\) with \(M\) positive-definite, and correctly returning a non-negative value.

Alternating forms

The inner product on an antisymmetric matrix should be alternating:

jj <- matrix(rpois(49,lambda=3.2),7,7)
M <- jj-t(jj) # M is antisymmetric
f <- as.function(inner(M))
LHS <- f(V)
RHS <- -f(V[,2:1])   # NB negative as we are checking for an alternating form
c(LHS=LHS,RHS=RHS,diff=LHS-RHS) 
##      LHS      RHS     diff 
## 19.50013 19.50013  0.00000

Above we see that \(\mathbf{x}^TM\mathbf{y} = -\mathbf{y}^TM\mathbf{x}\) where \(M\) is antisymmetric.

References

Hankin, R. K. S. 2022a. “Disordered Vectors in R: Introducing the disordR Package.” https://arxiv.org/abs/2210.03856; arXiv. https://doi.org/10.48550/ARXIV.2210.03856.
———. 2022b. “Stokes’s Theorem in R.” arXiv. https://doi.org/10.48550/ARXIV.2210.17008.
Spivak, M. 1965. Calculus on Manifolds. Addison-Wesley.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.