The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Estimating Consistent Tests for Stochastic Dominance
Version: 0.0.1
Description: Stochastic dominance tests help ranking different distributions. The package implements the consistent test for stochastic dominance by Barrett and Donald (2003) <doi:10.1111/1468-0262.00390>. Specifically, it implements Barrett and Donald's Kolmogorov-Smirnov type tests for first- and second-order stochastic dominance based on bootstrapping 2 and 1.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.2.3
Imports: dplyr, tibble, ggplot2, pracma, tidyr
Suggests: testthat
NeedsCompilation: no
Packaged: 2024-01-31 11:58:52 UTC; f80866559
Author: Sergei Schaub ORCID iD [aut, cre], Agroscope [cph]
Maintainer: Sergei Schaub <sergei.schaub@agroscope.admin.ch>
Repository: CRAN
Date/Publication: 2024-02-02 12:40:02 UTC

plot difference ecdfs

Description

This function computes the values of the cumulative difference of two empirical cumulative distribution function and plots the values.

Usage

dif_ecdf_plot(data_1, data_2, bins_size)

Arguments

data_1

data 1.

data_2

data 2.

bins_size

bin size.

Details

This function computes the values of the cumulative difference of two empirical cumulative distribution function and plots the values. This relates two showing second-order stochastic dominance.

Value

The function returns a plot as a ggplot2 object.

Examples


# load stodom
require(stodom)

 data_a <- rnorm(500, 3, 2)
 data_b <- rnorm(500, 1, 2)

# plot cumulative difference between two ecdfs
dif_ecdf_plot(data_1 = data_a, data_2 = data_b, bins_size = 0.1)

values of two ecdf and their cumulative difference

Description

This function computes the values of two empirical cumulative distribution function as well as their cumulative differences.

Usage

ecdf_dat_g(data_1, data_2, bins_size)

Arguments

data_1

data 1.

data_2

data 2.

bins_size

bin size.

Details

This function computes the values of two empirical cumulative distribution function as well as their cumulative differences.

Value

The function returns a data table.

Examples


# load stodom
require(stodom)

 data_a <- rnorm(500, 3, 2)
 data_b <- rnorm(500, 1, 2)

# compute the values of two ecdfs and their cumulative differences.
ecdf_dat_g(data_1 = data_a, data_2 = data_b, bins_size = 1)

plot ecdfs

Description

This function computes the values of two empirical cumulative distribution function and plots the values.

Usage

ecdf_plot(data_1, data_2, bins_size)

Arguments

data_1

data 1.

data_2

data 2.

bins_size

bin size.

Details

This function computes the values of two empirical cumulative distribution function and plots the values.

Value

The function returns a plot as a ggplot2 object.

Examples


# load stodom
require(stodom)

 data_a <- rnorm(500, 3, 2)
 data_b <- rnorm(500, 1, 2)

# plot ecdfs
ecdf_plot(data_1 = data_a, data_2 = data_b, bins_size = 0.1)

first-order stochastic dominance test

Description

This function tests for first-order stochastic dominance.

Usage

fo_stodom(data_1, data_2, bins_size, n_draws, useed, variable_1, variable_2, type)

Arguments

data_1

data 1.

data_2

data 2.

bins_size

bin size.

n_draws

number of draws to compute p values (default = 500).

useed

user defined seed

variable_1

name of a (as a string); only for the output table (default = "a").

variable_2

name of b (as a string); only for the output table (default = "b").

type

type of bootstrapped test, bootstrapping 1 and 2 of Barrett and Donald (2003) are available (default = "boot2").

Details

This function computes the consistent test of first-order stochastic dominance following Barrett and Donald (2003). In detail, this function estimate their Kolmogorov-Smirnov type tests based on bootstrapping 2. The function was implemented as part of Schaub xxx

Value

The function returns a list object containing the p-values of two dominance tests (i.e., variable 1 vs. variable 1 and variable 2 vs. variable 1).

References

Barrett, G. F., & Donald, S. G. (2003). Consistent tests for stochastic dominance. Econometrica, 71(1), 71-104.

Schaub, S. & El Benni, N. (2024). How do price (risk) changes influence farmers’ preference to reduce fertilizer application?

Examples


# load stodom
require(stodom)

 data_a <- rnorm(500, 3, 2)
 data_b <- rnorm(500, 1, 2)

# estimate first-order stochastic dominance
fo_stodom(data_1 = data_a, data_2 = data_b, n_draws = 100, useed = 1, bins_size = 1)

second-order stochastic dominance test

Description

This function tests for second-order stochastic dominance.

Usage

so_stodom(data_1, data_2, bins_size, n_draws, useed, variable_1, variable_2, type)

Arguments

data_1

data 1.

data_2

data 2.

bins_size

bin size.

n_draws

number of draws to compute p values (default = 500).

useed

user defined seed

variable_1

name of a (as a string); only for the output table (default = "a").

variable_2

name of b (as a string); only for the output table (default = "b").

type

type of bootstrapped test, bootstrapping 1 and 2 of Barrett and Donald (2003) are available (default = "boot2").

Details

This function computes the consistent test of second-order stochastic dominance following Barrett and Donald (2003). In detail, this function estimate their Kolmogorov-Smirnov type tests based on bootstrapping 2. The function was implemented as part of Schaub xxx

Value

The function returns a list object containing the p-values of two dominance tests (i.e., variable 1 vs. variable 1 and variable 2 vs. variable 1).

References

Barrett, G. F., & Donald, S. G. (2003). Consistent tests for stochastic dominance. Econometrica, 71(1), 71-104.

Schaub, S. & El Benni, N. (2024). How do price (risk) changes influence farmers’ preference to reduce fertilizer application?

Examples


# load stodom
require(stodom)

 data_a <- rnorm(500, 3, 2)
 data_b <- rnorm(500, 1, 2)

# estimate second-order stochastic dominance
so_stodom(data_1 = data_a, data_2 = data_b, n_draws = 100, useed = 1, bins_size = 1)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.