The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The stim
package fits the Stability Informed Model which
incorporates variable stability–how a variable correlates with future
versions of itself–into cross-sectional estimates. Assuming the process
is stationary, the model is specified correctly, and the stability
values are correct, the Stability Informed Model can estimate parameters
that are unbiased for cross-lagged (longitudinal) effects even when only
cross-sectional data are available.
For more information on the Stability Informed Model see https://psyarxiv.com/vg5as
This tutorial outlines how to estimate a Stability Informed Model
using the stim
package within an SEM framework.
You can install the development version of stim
from
GitHub with
::install_github("https://github.com/AnnaWysocki/stim") devtools
Let’s create some data to use in our example.
library(stim)
<- matrix(c(1, .3, .3,
S 3, 1, .3,
.3, .3, 1),
.nrow = 3, ncol = 3,
dimnames = list(c("X", "Y", "Z"),
c("X", "Y", "Z")))
stim
Function OverviewEstimate a single or a set of Stability Informed Models using the
stim()
function.
stim()
has five arguments
More details on the model
and stability
arguments can be found below.
model
ArgumentInput an object with the cross-sectional model specified in lavaan syntax. The model syntax should be specified as a cross-sectional path model in lavaan (See https://lavaan.ugent.be/tutorial/tutorial.pdf for information on lavaan syntax).
This input determines what parameters/effects are estimated. Note, the Stability Informed model can estimate a maximum of \[ \frac{p (p-1)}{2} \] parameters (where p is the number of measured variables). These parameters can be, for example, cross-lagged effects or residual covariances.
To estimate the effect of X on Y, I could create the following object
<- 'Y ~ X' # outcome ~ predictor model
More complex models can be specified as well.
<- 'Y ~ X
model2 Z ~ X + Y'
The default is to constrain all residual covariances to 0. But this constraint can be relaxed by specifying a residual covariance in the model syntax.
<- 'Y ~ X
model2 Z ~ X + Y
X ~~ Y' # Allows X and Y to have covarying residuals
The above model object specifies 4 estimated parameters, but, with 3 measured variables, the Stability Informed Model can only estimate 3 parameters. The remaining effects can either be fixed to 0 or fixed to a non-zero value.
<- 'Y ~ .6 * X # fix effect of X on Y to .6
model2 Z ~ X + Y
X ~~ Y'
Labels can be specified for the estimated parameters.
<- 'Y ~ .6 * X
model2 Z ~ Effect1 * X + Y # label the estimated effect of X on Z
X ~~ Y'
If no label is specified for a cross-lagged parameter, the default label is ‘CL’ and a subscript with the predictor name and the outcome name.
Residual covariances are labeled ‘RCov’ and a subscript with the names of the two variable whose residuals are covarying.
stability
ArgumentInput a object with the stability information for each variable in the model.
To fit model2
, the stability input should have a
stability value for X, Y, and Z.
<- c(X = .5, Y = .1, Z = .1) stability
The stability values need to be named, and the names must match the
variable names in the data
or S
input.
Multiple stability values can be specified for each variable. This results in multiple Stability Informed Models being estimated (one for each stability condition).
<- data.frame(X = c(.5, .55), Y = c(.1, .15), Z = c(.1, .2))
stability
rownames(stability) <- c("Model 1", "Model 2")
stability#> X Y Z
#> Model 1 0.50 0.10 0.1
#> Model 2 0.55 0.15 0.2
If this is the stability
input, two models will be
estimated. One model where the stability values for X, Y, and Z are .5,
.1, and .1, respectively, and one where the stability values for X, Y,
and Z are .55, .15, and .2, respectively.
<- stim(S = S, n = 1000, model = model2, stability = stability)
modelFit #> StIM: Stability Informed Models
#> -------------------------------------
#> -------------------------------------
#>
#> Variables (p): 3
#> Sample Size (n): 1000
#> Estimated Parameters (q): 3
#> Degrees of Freedom: 0
#> Number of Models Estimated: 2
#>
#> -------------------------------------
Some information about the model(s) is automatically printed out when the stim() function is run. The summary() function can be used to print out more information
summary(modelFit)
#> StIM: Stability Informed Models
#> -------------------------------------
#> -------------------------------------
#>
#> Variables (p): 3
#> Sample Size (n): 1000
#> Estimated Parameters (q): 3
#> Degrees of Freedom: 0
#>
#> -------------------------------------
#> Model 1
#>
#> Stability:
#> X Y Z
#> 0.5 0.1 0.1
#>
#> Autoregressive Effects:
#> ARX ARY ARZ
#> 0.50025018 -0.07985993 -0.24540155
#>
#> Cross Lagged Effects:
#> Effect Estimate Standard.Error P.Value
#> Effect1 0.468 0.117 0.000
#> CLYZ 0.684 0.616 0.266
#>
#> Residual Covariances:
#> Effect Estimate Standard.Error P.Value
#> RCovYX 0.012 0.037 0.754
#>
#> -------------------------------------
#> Model 2
#>
#> Stability:
#> X Y Z
#> 0.55 0.15 0.2
#>
#> Autoregressive Effects:
#> ARX ARY ARZ
#> 0.55027521 -0.02983492 -0.15827996
#>
#> Cross Lagged Effects:
#> Effect Estimate Standard.Error P.Value
#> Effect1 0.334 0.348 0.337
#> CLYZ 0.861 1.648 0.601
#>
#> Residual Covariances:
#> Effect Estimate Standard.Error P.Value
#> RCovYX -0.025 0.037 0.49
#>
#> -------------------------------------
#>
modelFit is a stim object that contains a list of objects with information for the Stability Informed Model
A table of the stability conditions. Each row contains the stability information for one Stability Informed Model.
$stability
modelFit#> X Y Z
#> Model 1 0.50 0.10 0.1
#> Model 2 0.55 0.15 0.2
A table with information on the cross-lagged paths. It has the predictor and outcome names, cross-lagged effect labels, and whether the cross-lagged path is estimated or constrained.
$CLEffectTable
modelFit#> predictor outcome name estimate
#> 1 X_0 Y 0.6 No
#> 2 X_0 Z Effect1 Yes
#> 3 Y_0 Z CLYZ Yes
A list of matrices with the estimated cross-lagged effects and standard errors and p-values for each of the estimated cross-lagged effects. Each matrix corresponds to one of the estimated Stability Informed Models.
$CLMatrices
modelFit#> $Model1
#> Effect Estimate Standard.Error P.Value
#> 3 Effect1 0.468 0.117 0.000
#> 6 CLYZ 0.684 0.616 0.266
#>
#> $Model2
#> Effect Estimate Standard.Error P.Value
#> 3 Effect1 0.334 0.348 0.337
#> 6 CLYZ 0.861 1.648 0.601
A list of matrices with the estimated residual covariances and their standard errors and p-values. Each matrix corresponds to one of the estimated Stability Informed Models.
$RCovMatrices
modelFit#> $Model1
#> Effect Estimate Standard.Error P.Value
#> 16 RCovYX 0.012 0.037 0.754
#>
#> $Model2
#> Effect Estimate Standard.Error P.Value
#> 16 RCovYX -0.025 0.037 0.49
A list of vectors (1 for each Stability Informed Model that was estimated) with the values for the auto-regressive effects.
A list of vectors with the values for each auto-regressive effect. Each vector corresponds to one of the estimated Stability Informed Models.
$ARVector
modelFit#> $Model1
#> ARX ARY ARZ
#> 0.50025018 -0.07985993 -0.24540155
#>
#> $Model2
#> ARX ARY ARZ
#> 0.55027521 -0.02983492 -0.15827996
A list of lavaan objects (1 for each Stability Informed Model)
To output the lavaan object easily, you can use the
lavaanSummary() function
lavaanSummary(modelFit)
#> Model 1
#> lavaan 0.6-12 ended normally after 143 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 12
#>
#> Number of observations 1000
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Latent Variables:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 =~
#> X (ARX) 0.500
#> Y 0.600
#> Z (Eff1) 0.468 0.117 4.009 0.000
#> Y_0 =~
#> X 0.000
#> Y (ARY) -0.080 0.020 -4.033 0.000
#> Z (CLYZ) 0.684 0.616 1.111 0.266
#> Z_0 =~
#> X 0.000
#> Y 0.000
#> Z (ARZ) -0.245 0.160 -1.534 0.125
#>
#> Covariances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 ~~
#> Y_0 (CvXY) 0.300 0.033 9.087 0.000
#> Z_0 (CvXZ) 0.300 0.033 9.087 0.000
#> Y_0 ~~
#> Z_0 (CvYZ) 0.300 0.033 9.087 0.000
#> .X ~~
#> .Y (RCYX) 0.012 0.037 0.313 0.754
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 (VarX) 1.000
#> Y_0 (VarY) 1.000
#> Z_0 (VarZ) 1.000
#> .X 0.749 0.045 16.765 0.000
#> .Y 0.661 0.048 13.775 0.000
#> .Z 0.229 0.778 0.295 0.768
#>
#> Constraints:
#> |Slack|
#> ARX - (0.5/VarX) 0.000
#> ARY - ((0.1-0.6*CovXY)/VarY) 0.000
#> ARZ-((0.1-(Effect1*CovXZ+CLYZ*CvYZ))/VrZ) 0.000
#> CovXY - ((0.6*VarX+ARY*CovXY)*ARX+RCovYX) 0.000
#> CvXZ-((Effct1*VrX+CLYZ*CvXY+ARZ*CXZ)*ARX) 0.000
#> CYZ-(0.6*(E1*VX+CLYZ*CXY+ARZ*CXZ)+(E1*CXY 0.000
#>
#> Model 2
#> lavaan 0.6-12 ended normally after 193 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 12
#>
#> Number of observations 1000
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Latent Variables:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 =~
#> X (ARX) 0.550 NA
#> Y 0.600
#> Z (Eff1) 0.334 0.348 0.961 0.337
#> Y_0 =~
#> X 0.000
#> Y (ARY) -0.030 0.020 -1.507 0.132
#> Z (CLYZ) 0.861 1.648 0.522 0.601
#> Z_0 =~
#> X 0.000
#> Y 0.000
#> Z (ARZ) -0.158 0.382 -0.415 0.678
#>
#> Covariances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 ~~
#> Y_0 (CvXY) 0.300 0.033 9.087 0.000
#> Z_0 (CvXZ) 0.300 0.033 9.087 0.000
#> Y_0 ~~
#> Z_0 (CvYZ) 0.300 0.033 9.087 0.000
#> .X ~~
#> .Y (RCYX) -0.025 0.037 -0.690 0.490
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 (VarX) 1.000
#> Y_0 (VarY) 1.000
#> Z_0 (VarZ) 1.000
#> .X 0.696 0.045 15.590 0.000
#> .Y 0.649 0.048 13.514 0.000
#> .Z 0.062 2.486 0.025 0.980
#>
#> Constraints:
#> |Slack|
#> ARX - (0.55/VarX) 0.000
#> ARY - ((0.15-0.6*CovXY)/VarY) 0.000
#> ARZ-((0.2-(Effect1*CovXZ+CLYZ*CvYZ))/VrZ) 0.000
#> CovXY - ((0.6*VarX+ARY*CovXY)*ARX+RCovYX) 0.000
#> CvXZ-((Effct1*VrX+CLYZ*CvXY+ARZ*CXZ)*ARX) 0.000
#> CYZ-(0.6*(E1*VX+CLYZ*CXY+ARZ*CXZ)+(E1*CXY 0.000
You can also print a subset of the lavaan objects by using the
subset
argument.
lavaanSummary(modelFit, subset = 1)
#> lavaan 0.6-12 ended normally after 143 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 12
#>
#> Number of observations 1000
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Latent Variables:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 =~
#> X (ARX) 0.500
#> Y 0.600
#> Z (Eff1) 0.468 0.117 4.009 0.000
#> Y_0 =~
#> X 0.000
#> Y (ARY) -0.080 0.020 -4.033 0.000
#> Z (CLYZ) 0.684 0.616 1.111 0.266
#> Z_0 =~
#> X 0.000
#> Y 0.000
#> Z (ARZ) -0.245 0.160 -1.534 0.125
#>
#> Covariances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 ~~
#> Y_0 (CvXY) 0.300 0.033 9.087 0.000
#> Z_0 (CvXZ) 0.300 0.033 9.087 0.000
#> Y_0 ~~
#> Z_0 (CvYZ) 0.300 0.033 9.087 0.000
#> .X ~~
#> .Y (RCYX) 0.012 0.037 0.313 0.754
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> X_0 (VarX) 1.000
#> Y_0 (VarY) 1.000
#> Z_0 (VarZ) 1.000
#> .X 0.749 0.045 16.765 0.000
#> .Y 0.661 0.048 13.775 0.000
#> .Z 0.229 0.778 0.295 0.768
#>
#> Constraints:
#> |Slack|
#> ARX - (0.5/VarX) 0.000
#> ARY - ((0.1-0.6*CovXY)/VarY) 0.000
#> ARZ-((0.1-(Effect1*CovXZ+CLYZ*CvYZ))/VrZ) 0.000
#> CovXY - ((0.6*VarX+ARY*CovXY)*ARX+RCovYX) 0.000
#> CvXZ-((Effct1*VrX+CLYZ*CvXY+ARZ*CXZ)*ARX) 0.000
#> CYZ-(0.6*(E1*VX+CLYZ*CXY+ARZ*CXZ)+(E1*CXY 0.000
A vector with logical information on whether there were any errors or warnings for each of the estimated models.
FALSE means no warnings TRUE means warnings.
$NoWarnings # Means no warnings for both models
modelFit#> [1] TRUE TRUE
The user-specified model syntax (input for model argument)
$CSModelSyntax
modelFit#> [1] "Y ~ .6 * X \n Z ~ Effect1 * X + Y # label the estimated effect of X on Z\n \n X ~~ Y"
The syntax for the Stability Informed Model–model syntax for the lavaan function. This contains the syntax to specify the structural part of the Stability Informed Model as well as the parameter constraints for the auto-regressive paths and the latent correlations
$SIMSyntax
modelFit#> [[1]]
#> [1] "X_0=~ARX*X+0.6*Y+Effect1*Z"
#> [2] "Y_0=~0*X+ARY*Y+CLYZ*Z"
#> [3] "Z_0=~0*X+0*Y+ARZ*Z"
#> [4] "X_0~~ CovXY*Y_0"
#> [5] "X_0~~ CovXZ*Z_0"
#> [6] "Y_0~~ CovYZ*Z_0"
#> [7] "X_0~~VarX*X_0"
#> [8] "Y_0~~VarY*Y_0"
#> [9] "Z_0~~VarZ*Z_0"
#> [10] "Y~~RCovYX*X"
#> [11] "ARX==0.5/VarX"
#> [12] "ARY==(0.1-0.6*CovXY)/VarY"
#> [13] "ARZ==(0.1-(Effect1*CovXZ+CLYZ*CovYZ))/VarZ"
#> [14] "CovXY==(0.6*VarX+ARY*CovXY)*ARX+RCovYX"
#> [15] "CovXZ==(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)*ARX"
#> [16] "CovYZ==0.6*(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)+(Effect1*CovXY+CLYZ*VarY+ARZ*CovYZ)*ARY"
#>
#> [[2]]
#> [1] "X_0=~ARX*X+0.6*Y+Effect1*Z"
#> [2] "Y_0=~0*X+ARY*Y+CLYZ*Z"
#> [3] "Z_0=~0*X+0*Y+ARZ*Z"
#> [4] "X_0~~ CovXY*Y_0"
#> [5] "X_0~~ CovXZ*Z_0"
#> [6] "Y_0~~ CovYZ*Z_0"
#> [7] "X_0~~VarX*X_0"
#> [8] "Y_0~~VarY*Y_0"
#> [9] "Z_0~~VarZ*Z_0"
#> [10] "Y~~RCovYX*X"
#> [11] "ARX==0.55/VarX"
#> [12] "ARY==(0.15-0.6*CovXY)/VarY"
#> [13] "ARZ==(0.2-(Effect1*CovXZ+CLYZ*CovYZ))/VarZ"
#> [14] "CovXY==(0.6*VarX+ARY*CovXY)*ARX+RCovYX"
#> [15] "CovXZ==(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)*ARX"
#> [16] "CovYZ==0.6*(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)+(Effect1*CovXY+CLYZ*VarY+ARZ*CovYZ)*ARY"
Model implied equations for the latent covariances and auto-regressive paths
$modelImpliedEquations
modelFit#> [[1]]
#> [1] "ARX==0.5/VarX"
#> [2] "ARY==(0.1-0.6*CovXY)/VarY"
#> [3] "ARZ==(0.1-(Effect1*CovXZ+CLYZ*CovYZ))/VarZ"
#> [4] "CovXY==(0.6*VarX+ARY*CovXY)*ARX+RCovYX"
#> [5] "CovXZ==(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)*ARX"
#> [6] "CovYZ==0.6*(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)+(Effect1*CovXY+CLYZ*VarY+ARZ*CovYZ)*ARY"
#>
#> [[2]]
#> [1] "ARX==0.55/VarX"
#> [2] "ARY==(0.15-0.6*CovXY)/VarY"
#> [3] "ARZ==(0.2-(Effect1*CovXZ+CLYZ*CovYZ))/VarZ"
#> [4] "CovXY==(0.6*VarX+ARY*CovXY)*ARX+RCovYX"
#> [5] "CovXZ==(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)*ARX"
#> [6] "CovYZ==0.6*(Effect1*VarX+CLYZ*CovXY+ARZ*CovXZ)+(Effect1*CovXY+CLYZ*VarY+ARZ*CovYZ)*ARY"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.