The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This package provides functions for performing stepwise split regularized regression.
You can install the stable version on R CRAN.
install.packages("stepSplitReg", dependencies = TRUE)
You can install the development version from GitHub
library(devtools)
::install_github("AnthonyChristidis/stepSplitReg") devtools
# Required Libraries
library(mvnfast)
# Setting the parameters
<- 800
p <- 40
n <- 2000
n.test <- 0.2
sparsity <- 0.5
rho <- 3
SNR set.seed(0)
# Generating the coefficient
<- floor(p*sparsity)
p.active <- 4*log(n)/sqrt(n)
a <- 0.2
neg.prob <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
nonzero.betas
# Correlation structure
<- matrix(0, p, p)
Sigma 1:p.active, 1:p.active] <- rho
Sigma[diag(Sigma) <- 1
<- c(nonzero.betas, rep(0 , p - p.active))
true.beta
# Computing the noise parameter for target SNR
<- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))
sigma.epsilon
# Simulate some data
set.seed(1)
<- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
x.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
y.train <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
x.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
y.test
# Stepwise Split Regularized Regression
<- cv.stepSplitReg(x.train, y.train, n_models = c(5, 10), max_variables = NULL, keep = 4/4,
step.out model_criterion = c("F-test", "RSS")[1],
stop_criterion = c("F-test", "pR2", "aR2", "R2", "Fixed")[1], stop_parameter = 0.05,
shrinkage = TRUE, alpha = 4/4, include_intercept = TRUE,
n_lambda = 50, tolerance = 1e-2, max_iter = 1e5, n_folds = 5,
model_weights = c("Equal", "Proportional", "Stacking")[1],
n_threads = 1)
<- coef(step.out, group_index = 1:20)
step.coefficients <- predict(step.out, x.test, group_index = 1:20)
step.predictions <- mean((step.predictions-y.test)^2)/sigma.epsilon^2 mspe.step
This package is free and open source software, licensed under GPL (>= 2).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.