| Type: | Package | 
| Title: | Scale-Shape Mixtures of Skew-Normal Distributions | 
| Version: | 0.2.0 | 
| Date: | 2017-01-31 | 
| Author: | Rocio Maehara and Luis Benites | 
| Maintainer: | Luis Benites <lbenitesanchez@gmail.com> | 
| Imports: | MCMCpack | 
| Description: | It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Repository: | CRAN | 
| NeedsCompilation: | no | 
| Packaged: | 2017-01-31 13:14:11 UTC; rmaehara | 
| Date/Publication: | 2017-02-01 08:34:50 | 
Scale-Shape Mixtures of Skew-Normal Distributions
Description
It provides the density and random number generator.
Details
| Package: | ssmsn | 
| Type: | Package | 
| Version: | 0.2 | 
| Date: | 2017-01-31 | 
| License: | GPL (>=2) | 
Author(s)
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
References
Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.
See Also
Examples
#See examples for the ssmsn function linked above.
Scale-Shape Mixtures of Skew-Normal Distributions
Description
It provides the density and random number generator.
Usage
dssmsn(x, mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")
rssmsn(n,mu= NULL,sigma2= NULL,lambda= NULL,nu= NULL,family="skew.t.t")
Arguments
| x | vector of observations. | 
| n | numbers of observations. | 
| mu | location parameter. | 
| sigma2 | scale parameter. | 
| lambda | skewness parameter. | 
| nu | degree freedom | 
| family | distribution family to be used in fitting ("skew.t.t", "skew.generalized.laplace.normal, "skew.slash.normal") | 
Details
As discussed in Jamalizadeh and Lin (2016) the scale-shape mixture of skew-normal (SSMSN) distribution admits the following conditioning-type stochasctic representation
Y=\mu + \sigma \tau_1^{-1/2}[Z_1 | (Z_2 < \lambda f^{-1/2} Z_1)],
where f = \tau_1/\tau_2 and (Z_1,Z_2) and (\tau_1,\tau_2) are independent. Alternatively the SSMSN distribution can be generated via the convolution-type stochastic representation, given by
Y=\mu + \sigma \left(\frac{\tau_1^{-1/2} f^{1/2}}{\sqrt{f + \lambda^2}}Z_2 + \frac{\lambda \tau_1^{-1/2}}{\sqrt{f + \lambda^2}}|Z_1|\right).
Value
dssmsn gives the density, rssmsn generates a random sample.
The length of the result is determined by n for rssmsn, and is the maximum of the lengths of the numerical arguments for the other functions dssmsn.
Author(s)
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
References
Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.
Examples
rSTT  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t");hist(rSTT)
rSGLN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal");hist(rSGLN)
rSSN  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal");hist(rSSN)
dSTT  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t")
dSGLN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal")
dSSN  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal")