The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

CRAN_Status_Badge CRAN Data Downloads

srlars

This package provides functions for performing split robust least angle regression.


Installation

You can install the stable version on R CRAN.

{r installation, eval = FALSE} install.packages("srlars", dependencies = TRUE)

You can install the development version from GitHub

library(devtools)
devtools::install_github("AnthonyChristidis/srlars")

Usage

# Simulation parameters
n <- 50
p <- 500
rho <- 0.5
rho.inactive <- 0.2
group.size <- 25
p.active <- 100
snr <- 1
contamination.prop <- 0.2

# Setting the seed
set.seed(0)

# Block Correlation
sigma.mat <- matrix(0, p, p)
sigma.mat[1:p.active, 1:p.active] <- rho.inactive
for(group in 0:(p.active/group.size - 1))
  sigma.mat[(group*group.size+1):(group*group.size+group.size),(group*group.size+1):(group*group.size+group.size)] <- rho
diag(sigma.mat) <- 1

# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))

# Setting the SD of the variance
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))

# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)

# Simulation of uncontaminated data
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
y <- x %*% true.beta + rnorm(n, 0, sigma)

# Contamination of data
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){

  a <- runif(p, min = -1, max = 1)
  a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
  x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
  y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}

# srlars models
srlars_fit <- srlars(x_train, y_train,
                     n_models = 5,
                     model_saturation = c("fixed", "p-value")[1],
                     alpha = 0.05, model_size = n-1,
                     robust = TRUE,
                     compute_coef = TRUE,
                     en_alpha = 1/4)
srlars_preds <- predict(srlars_fit, newx = x_test,
                        group_index = 1:srlars_fit$n_models,
                        dynamic = FALSE)
srlars_coefs <- coef(srlars_fit, group_index = 1:srlars_fit$n_models)
sens_srlars <- sum(which((srlars_coefs[-1]!=0)) <= p.active)/p.active
spec_srlars <- sum(which((srlars_coefs[-1]!=0)) <= p.active)/sum(srlars_coefs[-1]!=0)
mspe_srlars <- mean((y_test - srlars_preds)^2)/sigma^2

License

This package is free and open source software, licensed under GPL (>= 2).

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.