The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Simple Case Studies

library(srlTS)
library(magrittr) # for pipe

Lake Huron data set

data("LakeHuron")

fit_LH <- srlTS(LakeHuron)

fit_LH
#>  PF_gamma best_AICc best_BIC
#>      0.00  147.2053 159.8118
#>      0.25  146.3811 156.7937
#>      0.50  146.0177 156.4739
#>      1.00  144.1002 154.4967
#>      2.00  143.0362 153.2544
#>      4.00  149.8227 156.1558
#>      8.00  149.8227 156.1558
#>     16.00  149.8227 156.1558
#> 
#> Test-set prediction accuracy
#>       rmse       rsq       mae
#> AIC 0.7751 0.6203825 0.5888855
#> BIC 0.7751 0.6203825 0.5888855
coef(fit_LH)
#>                 0.00069
#> (Intercept) 111.8740292
#> lag1          1.1003545
#> lag2         -0.4732437
#> lag3          0.1796316
#> lag4          0.0000000
#> lag5          0.0000000
#> lag6          0.0000000
#> lag7          0.0000000
#> lag8          0.0000000
#> lag9          0.0000000

EuStockMarkets

If you have a univariate time series with suspected trend, such as the EuStockMarkets data set,

data("EuStockMarkets")
X <- as.numeric(time(EuStockMarkets))
X_sp <- splines::bs(X-min(X), df = 9)

fit_stock <- srlTS(log(EuStockMarkets[,1]), n_lags_max = 400, X = X_sp, w_exo = "unpenalized")
tail(coef(fit_stock), 11)
#>           0.0000096
#> lag399  0.000000000
#> lag400  0.000000000
#> 1       0.251818563
#> 2      -0.064008340
#> 3      -0.022147416
#> 4      -0.015421857
#> 5      -0.014734876
#> 6       0.001020223
#> 7       0.011708216
#> 8       0.311147538
#> 9       0.000000000

# insert plot? 

Seasonal examples

Nottem

data("nottem")
fit_nt <- srlTS(nottem, n_lags_max = 24)
coef(fit_nt)
#>                  0.0393
#> (Intercept) 11.89830169
#> lag1         0.40437830
#> lag2         0.00000000
#> lag3        -0.06838188
#> lag4        -0.09660138
#> lag5        -0.01640032
#> lag6         0.00000000
#> lag7        -0.04079986
#> lag8         0.00000000
#> lag9         0.00000000
#> lag10        0.00000000
#> lag11        0.16707390
#> lag12        0.00000000
#> lag13        0.05894906
#> lag14        0.00000000
#> lag15        0.00000000
#> lag16        0.00000000
#> lag17        0.00000000
#> lag18        0.00000000
#> lag19        0.00000000
#> lag20        0.00000000
#> lag21        0.00000000
#> lag22        0.00000000
#> lag23        0.00000000
#> lag24        0.34816025

UKDriverDeaths

data("UKDriverDeaths")
fit_ukdd <- srlTS(UKDriverDeaths, n_lags_max = 24)
coef(fit_ukdd)
#>                  0.0282
#> (Intercept) 198.6573213
#> lag1          0.3805100
#> lag2          0.0000000
#> lag3          0.0000000
#> lag4          0.0000000
#> lag5          0.0000000
#> lag6          0.0000000
#> lag7          0.0000000
#> lag8          0.0000000
#> lag9          0.0000000
#> lag10         0.0000000
#> lag11         0.1645141
#> lag12         0.4682378
#> lag13         0.0000000
#> lag14        -0.1357345
#> lag15         0.0000000
#> lag16         0.0000000
#> lag17         0.0000000
#> lag18         0.0000000
#> lag19         0.0000000
#> lag20         0.0000000
#> lag21         0.0000000
#> lag22         0.0000000
#> lag23         0.0000000
#> lag24         0.0000000

Adding holiday indicators…

sunspot


data("sunspot.month")
fit_ssm <- srlTS(sunspot.month)
fit_ssm
#>  PF_gamma best_AICc best_BIC
#>      0.00  18373.20 18506.04
#>      0.25  18356.15 18467.11
#>      0.50  18348.28 18467.59
#>      1.00  18417.42 18502.81
#>      2.00  18569.61 18598.12
#>      4.00  18782.77 18799.88
#>      8.00  18782.77 18799.88
#>     16.00  18782.77 18799.88
#> 
#> Test-set prediction accuracy
#>         rmse       rsq      mae
#> AIC 15.94153 0.8920872 11.85384
#> BIC 16.04978 0.8906613 11.99382

Model summaries

summary(fit_ssm)
#> Model summary at optimal AICc (lambda=0.0514; gamma=0.5)
#> lasso-penalized linear regression with n=2224, p=317
#> At lambda=0.0514:
#> -------------------------------------------------
#>   Nonzero coefficients         :  22
#>   Expected nonzero coefficients:  11.05
#>   Average mfdr (22 features)   :   0.502
#> 
#>         Estimate       z     mfdr Selected
#> lag1    0.543429 75.5671  < 1e-04        *
#> lag2    0.100936 14.3108  < 1e-04        *
#> lag9    0.095814 13.9892  < 1e-04        *
#> lag4    0.088981 12.7748  < 1e-04        *
#> lag3    0.077649 11.1365  < 1e-04        *
#> lag6    0.058591  8.7845  < 1e-04        *
#> lag5    0.031138  4.9444 0.001529        *
#> lag18  -0.028505 -4.4224 0.014416        *
#> lag102  0.021959  3.7402 0.166810        *
#> lag27  -0.019987 -3.4042 0.387958        *
#> lag212 -0.018947 -3.1479 0.588979        *
#> lag24  -0.018334 -3.0999 0.623896        *
#> lag111  0.017205  2.9704 0.709145        *
#> lag92   0.017222  2.8639 0.767884        *
#> lag12   0.012107  2.3759 0.921349        *
#> lag21  -0.009982 -2.0002 0.963700        *
#> lag292 -0.010658 -1.9653 0.966033        *
#> lag20  -0.007329 -1.6906 0.979140        *
#> lag34  -0.004472 -1.3302 0.987783        *
#> lag55  -0.003429 -1.2274 0.989271        *
#> lag96   0.001556  1.0625 0.991100        *
#> lag275  0.000595  0.8962 0.992427        *

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.