The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

spinBayes

Semi-parametric GxE Interaction via Bayesian Variable Selection

CRAN Codecov test coverage CRAN RStudio mirror downloads R-CMD-check

Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (G×E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear G×E interactions simultaneously (Ren et al. (2019)). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.

Features

How to install

install.packages("devtools")
devtools::install_github("jrhub/spinBayes")
install.packages("spinBayes")

Examples

Example.1 (default method)

library(spinBayes)
data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,])
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)

## plot the varying effects
plot(spbayes)

Example.2 (non-structural)

data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,], structural=FALSE)
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)

Example.3 (non-sparse)

data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,], structural=TRUE, sparse=FALSE)
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)

News

spinBayes 0.2.0 [2024-2-21]

Methods

This package provides implementation for methods proposed in

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.