The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Infrared, near-infrared and Raman spectroscopic data measured during chemical reactions, provide structural fingerprints by which molecules can be identified and quantified. The application of these spectroscopic techniques as inline process analytical tools (PAT), provides the (pharma-)chemical industry with novel tools, allowing to monitor their chemical processes, resulting in a better process understanding through insight in reaction rates, mechanistics, stability, etc. Data can be read into R via the generic spc-format, which is generally supported by spectrometer vendor software. Versatile pre-processing functions are available to perform baseline correction by linking to the ‘baseline’ package; noise reduction via the ‘signal’ package; as well as time alignment, normalization, differentiation, integration and interpolation. Implementation based on the S4 object system allows storing a pre-processing pipeline as part of a spectral data object, and easily transferring it to other datasets. Interactive plotting tools are provided based on the ‘plotly’ package. Non-negative matrix factorization (NMF) has been implemented to perform multivariate analyses on individual spectral datasets or on multiple datasets at once. NMF provides a parts-based representation of the spectral data in terms of spectral signatures of the chemical compounds and their relative proportions. The functionality to read in spc-files was adapted from the ‘hyperSpec’ package.
In this vignette we review the package functionality from loading data to NMF-analysis.
Spectral data are represented as en S3-class which containt a data matrix together with meta data such as wavelengths, time points and preprocessing steps executed on the data. An artificial example is added in the package by which we will illustrate the basic functionality.
library( spectralAnalysis )
spectralEx <- getSpectraInTimeExample( )
str( spectralEx)
#> Formal class 'SpectraInTime' [package "spectralAnalysis"] with 9 slots
#> ..@ spectra : num [1:101, 1:801] 1.92e-24 1.88e-24 1.83e-24 1.78e-24 1.74e-24 ...
#> ..@ experimentName: chr "ABLOMMAERT-01-00376"
#> ..@ spectralAxis : num [1:801] 100 100 101 102 102 ...
#> ..@ timePoints : num [1:101] 0 360 720 1080 1440 1800 2160 2520 2880 3240 ...
#> ..@ timePointsAlt : num [1:101] -10800 -10440 -10080 -9720 -9360 ...
#> ..@ extraInfo : list()
#> ..@ startTime : POSIXct[1:1], format: "2013-06-03 20:00:03"
#> ..@ units :List of 4
#> .. ..$ wavelength: chr "expression(tilde(nu)/cm^-1)"
#> .. ..$ spc : chr "expression('A')"
#> .. ..$ z : chr "expression(t/s)"
#> .. ..$ z.end : chr "expression(t/s)"
#> ..@ preprocessing : list()
You can extract slots via specific methods:
dim( spectralEx)
#> time spectralAxis
#> 101 801
getExperimentName(spectralEx)
#> [1] "ABLOMMAERT-01-00376"
getExtraInfo( spectralEx )
#> list()
getStartTime( spectralEx )
#> [1] "2013-06-03 20:00:03 CEST"
getTimePoints( spectralEx )
#> [1] 0 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960
#> [13] 4320 4680 5040 5400 5760 6120 6480 6840 7200 7560 7920 8280
#> [25] 8640 9000 9360 9720 10080 10440 10800 11160 11520 11880 12240 12600
#> [37] 12960 13320 13680 14040 14400 14760 15120 15480 15840 16200 16560 16920
#> [49] 17280 17640 18000 18360 18720 19080 19440 19800 20160 20520 20880 21240
#> [61] 21600 21960 22320 22680 23040 23400 23760 24120 24480 24840 25200 25560
#> [73] 25920 26280 26640 27000 27360 27720 28080 28440 28800 29160 29520 29880
#> [85] 30240 30600 30960 31320 31680 32040 32400 32760 33120 33480 33840 34200
#> [97] 34560 34920 35280 35640 36000
getTimePoints( spectralEx , timePointsAlt = TRUE , timeUnit = "seconds" )
#> [1] -10800 -10440 -10080 -9720 -9360 -9000 -8640 -8280 -7920 -7560
#> [11] -7200 -6840 -6480 -6120 -5760 -5400 -5040 -4680 -4320 -3960
#> [21] -3600 -3240 -2880 -2520 -2160 -1800 -1440 -1080 -720 -360
#> [31] 0 360 720 1080 1440 1800 2160 2520 2880 3240
#> [41] 3600 3960 4320 4680 5040 5400 5760 6120 6480 6840
#> [51] 7200 7560 7920 8280 8640 9000 9360 9720 10080 10440
#> [61] 10800 11160 11520 11880 12240 12600 12960 13320 13680 14040
#> [71] 14400 14760 15120 15480 15840 16200 16560 16920 17280 17640
#> [81] 18000 18360 18720 19080 19440 19800 20160 20520 20880 21240
#> [91] 21600 21960 22320 22680 23040 23400 23760 24120 24480 24840
#> [101] 25200
getTimePoints( spectralEx , timeUnit = "minutes" )
#> [1] 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102
#> [19] 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210
#> [37] 216 222 228 234 240 246 252 258 264 270 276 282 288 294 300 306 312 318
#> [55] 324 330 336 342 348 354 360 366 372 378 384 390 396 402 408 414 420 426
#> [73] 432 438 444 450 456 462 468 474 480 486 492 498 504 510 516 522 528 534
#> [91] 540 546 552 558 564 570 576 582 588 594 600
getTimePoints( spectralEx , timeUnit = "hours" )
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
#> [16] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
#> [31] 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
#> [46] 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
#> [61] 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4
#> [76] 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
#> [91] 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
getUnits( spectralEx )
#> $wavelength
#> [1] "expression(tilde(nu)/cm^-1)"
#>
#> $spc
#> [1] "expression('A')"
#>
#> $z
#> [1] "expression(t/s)"
#>
#> $z.end
#> [1] "expression(t/s)"
getTimePoints( spectralEx , timePointsAlt = TRUE )
#> [1] -10800 -10440 -10080 -9720 -9360 -9000 -8640 -8280 -7920 -7560
#> [11] -7200 -6840 -6480 -6120 -5760 -5400 -5040 -4680 -4320 -3960
#> [21] -3600 -3240 -2880 -2520 -2160 -1800 -1440 -1080 -720 -360
#> [31] 0 360 720 1080 1440 1800 2160 2520 2880 3240
#> [41] 3600 3960 4320 4680 5040 5400 5760 6120 6480 6840
#> [51] 7200 7560 7920 8280 8640 9000 9360 9720 10080 10440
#> [61] 10800 11160 11520 11880 12240 12600 12960 13320 13680 14040
#> [71] 14400 14760 15120 15480 15840 16200 16560 16920 17280 17640
#> [81] 18000 18360 18720 19080 19440 19800 20160 20520 20880 21240
#> [91] 21600 21960 22320 22680 23040 23400 23760 24120 24480 24840
#> [101] 25200
spectra <- getSpectra( spectralEx )
dim( spectra )
#> [1] 101 801
One can modify slot using specific methods:
setTimePointsAlt( spectralEx ) <- getTimePoints( spectralEx ) - 200
Using these methods, will avoid you to make some errors since validity testing is included.
setTimePointsAlt( spectralEx ) <- getTimePoints( spectralEx ) * 5
#> Error in !checkEqualTimeIntervals: invalid argument type
to get more information on the SpectraIntime class and its methods:
?SpectraInTime
The function loadAllSPCFiles() allows to read in all spectra data into a list:
allSPCFiles <- loadAllSPCFiles(directoryFiles)
Different subsetting methods have been defined:
r()
functione()
functionprint( r( 2.5 , 10.8) )
#> An object of class "RangeToSubset"
#> Slot "range":
#> min max
#> 2.5 10.8
print( r( c(1 , 3 , 2 , 6 , 9 , 3 ) ) )
#> An object of class "RangeToSubset"
#> Slot "range":
#> min max
#> 1 9
print( e( 1, 3 ,5 ,6 ,7 ,8 ) )
#> An object of class "ElementsToSelect"
#> Slot "elements":
#> [1] 1 3 5 6 7 8
Note that r()
and e()
work similar to the usual c()
function:
# range subsetting
spectralEx <- getSpectraInTimeExample()
spectraSubset <- spectralEx[ r( 1000 , 30000 ) , r(130 , 135 ) ]
getTimePoints( spectraSubset )
#> [1] 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320 4680 5040
#> [13] 5400 5760 6120 6480 6840 7200 7560 7920 8280 8640 9000 9360
#> [25] 9720 10080 10440 10800 11160 11520 11880 12240 12600 12960 13320 13680
#> [37] 14040 14400 14760 15120 15480 15840 16200 16560 16920 17280 17640 18000
#> [49] 18360 18720 19080 19440 19800 20160 20520 20880 21240 21600 21960 22320
#> [61] 22680 23040 23400 23760 24120 24480 24840 25200 25560 25920 26280 26640
#> [73] 27000 27360 27720 28080 28440 28800 29160 29520 29880
getSpectralAxis( spectraSubset )
#> [1] 130.0 130.5 131.0 131.5 132.0 132.5 133.0 133.5 134.0 134.5 135.0
spectraTimeSubset <- spectralEx[ r( 1000 , 30000 ) , ]
spectraWavelengthSubset <- spectralEx[ , r(130 , 135 ) ]
# other types of subsetting
# logical
spectraSubsetLogical <- spectralEx[ getTimePoints( spectralEx ) > 300 ,
getSpectralAxis( spectralEx ) <= 500 ]
subsetLogTimeAlt <- spectralEx[
getTimePoints( spectralEx , timePointsAlt = TRUE ) > 0 ,
getSpectralAxis( spectralEx ) <= 500 ]
# integer
subsetInteger <- spectralEx[ c( 1, 5, 10) , c( 4 , 4 , 4 , 8 , 16) ]
# closest element matching
spectraSubsetElem <- spectralEx[ e( 1.234 , 3.579 ) ,
e( 200.001 , 466.96 ) , timeUnit = "hours" ]
getTimePoints( spectraSubsetElem , timeUnit = "hours" )
#> [1] 1.2 3.6
getSpectralAxis( spectraSubsetElem )
#> [1] 200 467
summarySpec <- summary( spectralEx )
str( summarySpec )
#> Formal class 'SummaryByWavelengths' [package "spectralAnalysis"] with 6 slots
#> ..@ experimentName: chr "ABLOMMAERT-01-00376"
#> ..@ timeRange : num [1:2] 0 36000
#> ..@ timeRangeAlt : num [1:2] -10800 25200
#> ..@ spectralRange : num [1:2] 100 500
#> ..@ spectra :'data.frame': 801 obs. of 6 variables:
#> .. ..$ wavelengths : num [1:801] 100 100 101 102 102 ...
#> .. ..$ firstSpectrum: num [1:801] 1.92e-24 2.47e-24 3.17e-24 4.06e-24 5.20e-24 ...
#> .. ..$ lastSpectrum : num [1:801] 1.58e-25 2.03e-25 2.60e-25 3.33e-25 4.27e-25 ...
#> .. ..$ mean : num [1:801] 7.10e-25 9.11e-25 1.17e-24 1.50e-24 1.92e-24 ...
#> .. ..$ median : num [1:801] 5.51e-25 7.07e-25 9.08e-25 1.16e-24 1.49e-24 ...
#> .. ..$ sd : num [1:801] 4.95e-25 6.36e-25 8.15e-25 1.05e-24 1.34e-24 ...
#> ..@ units :List of 4
#> .. ..$ wavelength: chr "expression(tilde(nu)/cm^-1)"
#> .. ..$ spc : chr "expression('A')"
#> .. ..$ z : chr "expression(t/s)"
#> .. ..$ z.end : chr "expression(t/s)"
4 different visualization options are implemented:
data = getSpectraInTimeExample()
library( plotly )
plot( x = data[ e( 1 , 2 , 3) , , timeUnit = "hours" ] , type = "time" , timeUnit = "hours" , timePointsAlt = FALSE )
plot( x = data[ , e( seq( 200 , 400 , 50 ) ) ] , type = "spectralAxis" , timeUnit = "minutes" , timePointsAlt = TRUE )
plot( x = data , type = "contour" , nColors = 200 , colors = "C" , timeUnit = "seconds", timePointsAlt = TRUE )
Note: 3D-plot not run to save space:
plot( x = data , type = "3D" , timeUnit = "hours" , timePointsAlt = FALSE )
note that subsetting with element matching is useful for the time and wavelength views.
We have also 2 options to plot a list of SpectraInTime-objects directly.
Line plot:
listOfSpectra <- getListOfSpectraExample()
plot( listOfSpectra , times = 1:3 , timeUnit = "hours" , colors = "A" )
and contour plot:
plot( listOfSpectra , timeUnit = "hours" , colors = "C" , type = "contour" )
Time alignment of SpectraInTime refers to translating and possibly subsetting the secondary time axis. Such that different experiments have a comparable time origin.
Information to align SpectraInTime is contained in processTimes object for one experiment:
processTimes <- getProcessTimesExample()
processTimes
#> An object of class "ProcessTimes"
#> Slot "experimentName":
#> [1] "ABLOMMAERT-01-00376"
#>
#> Slot "timeHeatingAboveMin":
#> [1] "2013-06-03 20:30:03 CEST"
#>
#> Slot "timeStartReaction":
#> [1] "2013-06-03 22:30:03 CEST"
#>
#> Slot "timeEndProcess":
#> [1] "2013-06-04 03:30:03 CEST"
#>
#> Slot "Tset":
#> [1] 100
#>
#> Slot "comments":
#> [1] ""
and processTimesFrame for multiple experiments:
processTimesFrame <- getProcessTimesFrameExample()
processTimesFrame
#> An object of class "ProcessTimesFrame"
#> Slot "processTimes":
#> experimentName timeHeatingAboveMin timeStartReaction
#> 1 ABLOMMAERT-01-00376 2013-06-03 20:30:03 2013-06-03 22:30:03
#> 2 ABLOMMAERT-02-00347 2013-06-03 20:30:03 2013-06-03 22:50:03
#> timeEndProcess Tset comments
#> 1 2013-06-04 03:30:03 100
#> 2 2013-06-04 03:30:03 100
There are 3 methods to align a SpectraInTime:
spectra <- getSpectraInTimeExample()
listOfSpectra <- getListOfSpectraExample()
pathProcessTimes <- getPathProcessTimesExample()
ex1 <- timeAlign( x = spectra , y = processTimes ,
cutCooling = TRUE , cutBeforeMinTemp = TRUE )
ex2 <- timeAlign( x = listOfSpectra , y = processTimesFrame ,
cutCooling = TRUE , cutBeforeMinTemp = TRUE )
ex3 <- timeAlign( x = listOfSpectra , y = pathProcessTimes ,
cutCooling = TRUE , cutBeforeMinTemp = TRUE , timeFormat = "%Y-%m-%d %H:%M:%OS" )
We used 2 example spectra from a chemical synthesis monitored by an IR-probe to illustrate preprocessing and NMF-analyis.
exampleData1 <- readSpectra( system.file( "exampleData/exampleExperiment1.txt" ,
package = "spectralAnalysis") )
plot( exampleData1, type = "contour" )
Pre-processing is applied to correct for any physical influences such as light scattering. It allows for better interpretation and more precise modeling. Usually several pre-processing steps are applied after each other and the ideal pre-processing procedure depends on the technology and the measured system.
Scientist can often indicate a relevant wavelength range. In this manner we can reduce the number of covariates.
dim( exampleData1 )
#> time spectralAxis
#> 199 211
wavelengthRange <- r ( 800 , 1625 )
spectralDataSelect <- exampleData1[ r( 0 , 5 ) , wavelengthRange , timeUnit = "hours" ]
Baseline correction implies fitting a global function for each measured spectra and subtracting it from the data.
timesToShow <- e( 0.5 , 5 )
plot( spectralDataSelect[ timesToShow , , timeUnit = "hours"] , type = "time" )
spectralDataBaseline <- baselineCorrect( spectralDataSelect ,
method = 'modpolyfit', degree = 4 )
plot( spectralDataBaseline[ timesToShow , , timeUnit = "hours"] , type = "time" )
Smoothing or filtering in the wavelength domain can reduce measurement noise, the default smoothing is the Savitky-golay filter, which uses a local polynomial approximation, and which can be also be used to calculate derivatives in the wavelength domain. This can be useful to better detect peaks, especially in NIR-spectra where peaks are not clearly distinguishable otherwise.
spectralDataSmooth <- smooth( spectralDataBaseline , window = 5 )
plot( spectralDataSmooth[ timesToShow , , timeUnit = "hours"] , type = "time" )
smoothing has little influence here, because the measurements contain little noise.
spectralDataDerivative <- smooth( spectralDataBaseline , derivative = 1 )
plot( spectralDataDerivative[ timesToShow , , timeUnit = "hours"] , type = "time" )
Normalization standardizes the intensities by:
spectralDataNormalized <- normalize( spectralDataSmooth , method = "integration" )
plot( spectralDataNormalized[ timesToShow , , timeUnit = "hours"] , type = "time" )
Multiplicative scatter correction (MSC) removes scatter effects by regressing a spectra in the wavelength domain against a reference spectra and substracting the found intercept and dividing by the slope for each spectra
?scatterCorrrect
preprocessing steps can be replicated on new data:
allSpectraDataProcessed <- lapply( listOfSpectra , preprocess , with = spectralDataSmooth )
We will perform NMF-ananalysis on the smoothed and baseline corrected spectra for the time range: 0 - 5 hours assuning 3 chemical components.
spectralExSelect <- spectralDataSmooth[ r( 0 , 5 ) , , timeUnit = "hours" ]
nmfResult <- spectralNMF( spectralExSelect , rank = 3 , subsamplingFactor = 5 )
#> Warning in nonNegativePreprocessing(spectra, method): Input data contain
#> negative values. These were reset to zero for NMF analysis
nmfObject <- getDimensionReduction( nmfResult , type = "NMF")$NMF
nmfTrends <- t( NMF::coef( nmfObject ) )
matplot( nmfTrends , type = "l" , x = getTimePoints( spectralExSelect , timeUnit = "hours" ) , xlab = "time in hours" )
NMF-analysis is a useful exploratory tool to get insight in the chemical process.
Including pure-component spectra can increase the quality of NMF-analysis.
see
?spectralNMF
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.