The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Spatial Downscaling Using Bias Correction Approach
Version: 0.1.0
Author: Rasheed AM, Egodawatta P, Goonetilleke A, McGree J
Maintainer: Rasheed AM <a.rasheed@qut.edu.au>
Description: Spatial downscaling of climate data (Global Circulation Models/Regional Climate Models) using quantile-quantile bias correction technique.
License: GPL-2
LazyData: TRUE
Imports: stats, graphics
Depends: R (≥ 2.10)
RoxygenNote: 5.0.1
NeedsCompilation: no
Packaged: 2017-02-16 01:09:53 UTC; rasheeda
Repository: CRAN
Date/Publication: 2017-02-16 07:55:43

Calibration Parameters

Description

Displays the shape factors, scale factors and the threshold values of the observation and GCM/RCM data set which ultimately define the model

Usage

ParaCal(obs_c, mod_c, obs_v, mod_v, mod_fut)

Arguments

obs_c

vector of observational climate data (rainfall) used for calibrating the model

mod_c

vector of GCM/RCM climate data (rainfall) used for calibrating the model

obs_v

vector of observational climate data (rainfall) used for validating the model

mod_v

vector of GCM/RCM climate data (rainfall) used for validating the model

mod_fut

vector of GCM/RCM future climate data (rainfall) need to be downscaled

Details

1) Dry-days correction / Defining threshold values

The relationship between the cumulative frequencies (thresholds) corresponding to the dry days of GCM/RCM data and that of the observational data is defined by a polynomial function given by;

threshold_obs = (threshold_mod)^n

n = ln(threshold_obs_c) / ln(threshold_mod_c)

2) wet-days correction / Correcting the intensity of the GCM/RCM data

Two parameter (shape and scale factors) gamma distribution function was used to model the frequency distributions of the rainfall data. The GCM/RCM rainfall above the threshold were corrected using unique correction factors for different cumulative frequencies.

corrected_mod_fut = mod_fut * F-1(F.mod_fut, sh_obs_c,,sc_obs_c)/ F-1 (F.mod_fut,sh_mod_c,,sc_mod_c)

where obs - observational data; mod - GCM/RCM data; n - constant; c - calibration; v - validation; fut - future data; sh - shape factor; sc- scale factor; F. - cumulative density function and F-1 - inverse of cumulative density function

Examples


#subsetting dat_model
   mod_calibration=subset(data_model,(year==2003|year==2005|year==2007|year==2009|year==2011))
   mod_validation= subset(data_model,(year==2004|year==2006|year==2008|year==2010|year==2012))
#subsetting data_observation
   obs_calibration=subset(data_observation,(year==2003|year==2005|year==2007|year==2009|year==2011))
   obs_validation=subset(data_observation,(year==2004|year==2006|year==2008|year==2010|year==2012))
#creating the input vectors
   obs_c=obs_calibration$pr
   mod_c=mod_calibration$pr
   obs_v=obs_validation$pr
   mod_v=mod_validation$pr
   mod_fut= data_model_future$pr

   ParaCal(obs_c,mod_c,obs_v,mod_v,mod_fut)

Validation Summary

Description

Displays the summary of the validation.

Usage

ResVal(obs_c, mod_c, obs_v, mod_v, mod_fut)

Arguments

obs_c

vector of observational climate data (rainfall) used for calibrating the model

mod_c

vector of GCM/RCM climate data (rainfall) used for calibrating the model

obs_v

vector of observational climate data (rainfall) used for validating the model

mod_v

vector of GCM/RCM climate data (rainfall) used for validating the model

mod_fut

vector of GCM/RCM future climate data (rainfall) need to be downscaled

Details

1) Dry-days correction / Defining threshold values

The relationship between the cumulative frequencies (thresholds) corresponding to the dry days of GCM/RCM data and that of the observational data is defined by a polynomial function given by;

threshold_obs = (threshold_mod)^n

n = ln(threshold_obs_c) / ln(threshold_mod_c)

2) wet-days correction / Correcting the intensity of the GCM/RCM data

Two parameter (shape and scale factors) gamma distribution function was used to model the frequency distributions of the rainfall data. The GCM/RCM rainfall above the threshold were corrected using unique correction factors for different cumulative frequencies.

corrected_mod_fut = mod_fut * F-1(F.mod_fut, sh_obs_c,,sc_obs_c)/ F-1 (F.mod_fut,sh_mod_c,,sc_mod_c)

where obs - observational data; mod - GCM/RCM data; n - constant; c - calibration; v - validation; fut - future data; sh - shape factor; sc- scale factor; F. - cumulative density function and F-1 - inverse of cumulative density function

Examples


#subsetting dat_model
   mod_calibration=subset(data_model,(year==2003|year==2005|year==2007|year==2009|year==2011))
   mod_validation= subset(data_model,(year==2004|year==2006|year==2008|year==2010|year==2012))
#subsetting data_observation
   obs_calibration=subset(data_observation,(year==2003|year==2005|year==2007|year==2009|year==2011))
   obs_validation=subset(data_observation,(year==2004|year==2006|year==2008|year==2010|year==2012))
#creating the input vectors
   obs_c=obs_calibration$pr
   mod_c=mod_calibration$pr
   obs_v=obs_validation$pr
   mod_v=mod_validation$pr
   mod_fut= data_model_future$pr

   ResVal(obs_c,mod_c,obs_v,mod_v,mod_fut)

Data-sample

Description

EC-EARTH (GCM) rainfall data at the Gold Coast Seaway meteorologican station, Australia (station number - 40764, Period- 1/1/2000 to 12/31/2012, Latitude/longitude - -27.9390/153.4283)

Usage

data_model

Format

A data.frame of time and precipitation in mm for every 3h interval.


Data-sample

Description

EC-EARTH (GCM) furure (RCP 4.5) rainfall data at the Gold Coast Seaway meteorologican station, Australia (station number - 40764, Period- 1/1/2026 to 12/31/2045, Latitude/longitude - -27.9390/153.4283)

Usage

data_model_future

Format

A data.frame of time and precipitation in mm for every 3h interval.


Data-sample

Description

Observational rainfall data at the Gold Coast Seaway meteorologican station, Australia (station number - 40764, Period- 1/4/2000 to 12/31/2012, Latitude/longitude - -27.9390/153.4283)

Usage

data_observation

Format

A data.frame of time and precipitation in mm for every 3h interval


Spatial Downscaling

Description

Generating the future climate data (rainfall)

Usage

downscale(obs_c, mod_c, obs_v, mod_v, mod_fut)

Arguments

obs_c

vector of observational climate data (rainfall) used for calibrating the model

mod_c

vector of GCM/RCM rainfall data (rainfall) used for calibrating the model

obs_v

vector of observational climate data (rainfall) used for validating the model

mod_v

vector of GCM/RCM climate data (rainfall) used for validating the model

mod_fut

vector of GCM/RCM future climate data (rainfall) need to be downscaled

Details

1) Dry-days correction / Defining threshold values

The relationship between the cumulative frequencies (thresholds) corresponding to the dry days of GCM/RCM data and that of the observational data is defined by a polynomial function given by;

threshold_obs = (threshold_mod)^n

n = ln(threshold_obs_c) / ln(threshold_mod_c)

2) wet-days correction / Correcting the intensity of the GCM/RCM data

Two parameter (shape and scale factors) gamma distribution function is used to model the frequency distributions of the rainfall data. The GCM/RCM rainfall above the threshold were corrected using unique correction factors for different cumulative frequencies.

corrected_mod_fut = mod_fut * F-1(F.mod_fut, sh_obs_c,,sc_obs_c)/ F-1 (F.mod_fut,sh_mod_c,,sc_mod_c)

where obs - observational data; mod - GCM/RCM data; n - constant; c - calibration; v - validation; fut - future data; sh - shape factor; sc- scale factor; F. - cumulative density function and F-1 - inverse of cumulative density function

Examples

#subsetting dat_model
   mod_calibration=subset(data_model,(year==2003|year==2005|year==2007|year==2009|year==2011))
   mod_validation= subset(data_model,(year==2004|year==2006|year==2008|year==2010|year==2012))
#subsetting data_observation
   obs_calibration=subset(data_observation,(year==2003|year==2005|year==2007|year==2009|year==2011))
   obs_validation=subset(data_observation,(year==2004|year==2006|year==2008|year==2010|year==2012))
#creating the input vectors
   obs_c=obs_calibration$pr
   mod_c=mod_calibration$pr
   obs_v=obs_validation$pr
   mod_v=mod_validation$pr
   mod_fut= data_model_future$pr

   downscale(obs_c,mod_c,obs_v,mod_v,mod_fut)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.