The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Hierarchical Spatial Finlay-Wilkinson Model
Version: 0.1.0
Author: Xingche Guo <xguo@iastate.edu>
Maintainer: Xingche Guo <xguo@iastate.edu>
Description: Estimation and Prediction Functions Using Bayesian Hierarchical Spatial Finlay-Wilkinson Model for Analysis of Multi-Environment Field Trials.
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.1.1
Depends: R (≥ 2.10)
LinkingTo: Rcpp, RcppArmadillo
Imports: Rcpp
NeedsCompilation: yes
Packaged: 2022-03-29 07:41:56 UTC; apple
Repository: CRAN
Date/Publication: 2022-03-29 18:40:02 UTC

Estimation Function for Hierarchical Finlay-Wilkinson Model

Description

This function ignores spatial effects.

Usage

HFWM_est(Y, VAR, ENV, kin_info = FALSE, A = NULL, env_info = FALSE,
  Z = NULL, inits = NULL, hyper_para = NULL, M_iter = 5000,
  burn_in = 3000, thin = 5, save_chain = FALSE, seed = NULL)

Arguments

Y

A length-N numerical response vector

VAR

A length-N factor/character vector indicating the genotype information of Y

ENV

A length-N factor/character vector indicating the field information of Y

kin_info

A logical parameter controling if to use kinship matrix

A

kinship matrix, give value only if kin_info = TRUE

env_info

A logical parameter controling whether to use environmental covariates

Z

environmental covariates matrix with rownames = field names, give value only if env_info = TRUE

inits

initial values, default is given

hyper_para

hyper-parameter values, default is given

M_iter

Total iteration number

burn_in

Burn in number

thin

Thinning value

save_chain

A logical parameter controling whether to save MCMC chain: 'Chains.rds' in current working directory

seed

Random seed value

Value

Mean estimates and RMSE value

Examples

library(spFW)

# load data
data(spFW_example_data)
Y <- spFW_example_data$yield
VAR <- spFW_example_data$geno
ENV <- spFW_example_data$loc
COOR <- spFW_example_data[,c(4,5)]

# run model
fit0 <- HFWM_est(Y, VAR, ENV, M_iter = 1000, burn_in = 500, thin = 5)

# plot estimated Y
plot(Y, fit0$yhat)


Prediction Function for Hierarchical Finlay-Wilkinson Model

Description

This function ignores spatial effects.

Usage

HFWM_pred(Y, VAR, ENV, VAR2, ENV2, save_int = FALSE, kin_info = FALSE,
  A = NULL, inits = NULL, hyper_para = NULL, M_iter = 5000,
  burn_in = 3000, thin = 5, seed = NULL)

Arguments

Y

A length-N1 numerical response vector from training set

VAR

A length-N1 factor/character vector indicating the genotype information of Y

ENV

A length-N1 factor/character vector indicating the field information of Y

VAR2

A length-N2 factor/character vector indicating the genotype information of testing set

ENV2

A length-N2 factor/character vector indicating the field information of of testing set

save_int

A logical parameter controling whether to save prediction credible intervals

kin_info

A logical parameter controling if to use kinship matrix

A

kinship matrix, give value only if kin_info = TRUE

inits

initial values, default is given

hyper_para

hyper-parameter values, default is given

M_iter

Total iteration number

burn_in

Burn in number

thin

Thinning value

seed

Random seed value

Value

Mean prediction values and/or prediction intervals

Examples

library(spFW)

# load and split data
data(spFW_example_data)
idx_pred <- sample(125, 25)

Y0 <- spFW_example_data$yield
VAR0 <- spFW_example_data$geno
ENV0 <- spFW_example_data$loc


Y1 <- Y0[-idx_pred]
Y2 <- Y0[idx_pred]
VAR1 <- VAR0[-idx_pred]
VAR2 <- VAR0[idx_pred]
ENV1 <- ENV0[-idx_pred]
ENV2 <- ENV0[idx_pred]
order_y <- order(Y2)

# run model
pred0 <- HFWM_pred(Y1, VAR1, ENV1, VAR2, ENV2, save_int = TRUE,
                   M_iter = 1000, burn_in = 500, thin = 5)

# visualize prediction results
plot(1:25, pred0$PY[order_y], ylim = c(50, 250), pch = 15, col = "red",
     xlab = "Plant ID for Prediction", ylab = "Yield",
     main = "95% Prediction Intervals with Predicted Mean (Red) Versus True Yield (Blue)")
points(1:25, Y2[order_y], col = "blue")
for (i in 1:25){
  lines(x = c(i,i), y = c(pred0$PY_CI[,order_y][1,i], pred0$PY_CI[,order_y][4,i]))
}




Estimation Function for Hierarchical Spatial Finlay-Wilkinson Model

Description

This function considers spatial adjustments.

Usage

HSFWM_est(Y, VAR, ENV, COOR, kin_info = FALSE, A = NULL,
  env_info = FALSE, Z = NULL, inits = NULL, hyper_para = NULL,
  M_iter = 5000, burn_in = 3000, thin = 5, save_chain = FALSE,
  seed = NULL)

Arguments

Y

A length-N numerical response vector

VAR

A length-N factor/character vector indicating the genotype information of Y

ENV

A length-N factor/character vector indicating the field information of Y

COOR

A N by 2 numerical matrix indicating the spatial locations of Y

kin_info

A logical parameter controling if to use kinship matrix

A

kinship matrix, give value only if kin_info = TRUE

env_info

A logical parameter controling whether to use environmental covariates

Z

environmental covariates matrix with rownames = field names, give value only if env_info = TRUE

inits

initial values, default is given

hyper_para

hyper-parameter values, default is given

M_iter

Total iteration number

burn_in

Burn in number

thin

Thinning value

save_chain

A logical parameter controling whether to save MCMC chain: 'Chains.rds' in current working directory

seed

Random seed value

Value

Mean estimates and RMSE value

Examples

library(spFW)

# load data
data(spFW_example_data)
Y <- spFW_example_data$yield
VAR <- spFW_example_data$geno
ENV <- spFW_example_data$loc
COOR <- spFW_example_data[,c(4,5)]

# run model
fit1 <- HSFWM_est(Y, VAR, ENV, COOR,
                  M_iter = 1000, burn_in = 500, thin = 5)

# plot estimated Y
plot(Y, fit1$yhat)



Prediction Function for Hierarchical Spatial Finlay-Wilkinson Model

Description

This function considers spatial adjustments.

Usage

HSFWM_pred(Y, VAR, ENV, COOR, VAR2, ENV2, COOR2, save_int = FALSE,
  kin_info = FALSE, A = NULL, inits = NULL, hyper_para = NULL,
  M_iter = 5000, burn_in = 3000, thin = 5, seed = NULL)

Arguments

Y

A length-N1 numerical response vector from training set

VAR

A length-N1 factor/character vector indicating the genotype information of Y

ENV

A length-N1 factor/character vector indicating the field information of Y

COOR

A N1 by 2 numerical matrix indicating the spatial locations of Y

VAR2

A length-N2 factor/character vector indicating the genotype information of testing set

ENV2

A length-N2 factor/character vector indicating the field information of of testing set

COOR2

A N2 by 2 numerical matrix indicating the spatial locations of testing set

save_int

A logical parameter controling whether to save prediction credible intervals

kin_info

A logical parameter controling if to use kinship matrix

A

kinship matrix, give value only if kin_info = TRUE

inits

initial values, default is given

hyper_para

hyper-parameter values, default is given

M_iter

Total iteration number

burn_in

Burn in number

thin

Thinning value

seed

Random seed value

Value

Mean prediction values and/or prediction intervals

Examples

library(spFW)

# load and split data
data(spFW_example_data)
idx_pred <- sample(125, 25)

Y0 <- spFW_example_data$yield
VAR0 <- spFW_example_data$geno
ENV0 <- spFW_example_data$loc
COOR0 <- spFW_example_data[,c(4,5)]

Y1 <- Y0[-idx_pred]
Y2 <- Y0[idx_pred]
VAR1 <- VAR0[-idx_pred]
VAR2 <- VAR0[idx_pred]
ENV1 <- ENV0[-idx_pred]
ENV2 <- ENV0[idx_pred]
COOR1 <- COOR0[-idx_pred,]
COOR2 <- COOR0[idx_pred,]
order_y <- order(Y2)


# run model
pred1 <- HSFWM_pred(Y1, VAR1, ENV1, COOR1, VAR2, ENV2, COOR2, save_int = TRUE,
                    M_iter = 1000, burn_in = 500, thin = 5)

# visualize prediction results
plot(1:25, pred1$PY[order_y], ylim = c(50, 250), pch = 15, col = "red",
     xlab = "Plant ID for Prediction", ylab = "Yield",
     main = "95% Prediction Intervals with Predicted Mean (Red) Versus True Yield (Blue)")
points(1:25, Y2[order_y], col = "blue")
for (i in 1:25){
  lines(x = c(i,i), y = c(pred1$PY_CI[,order_y][1,i], pred1$PY_CI[,order_y][4,i]))
}

Example Data for Analysis

Description

A data frame containing the plant yield, genotypes, environments, and within-field positions.

Usage

spFW_example_data

Format

A data frame with 5 elements, which are:

yield

Plant yield

geno

Plant genotype ID

loc

Plant environment ID

range

Plant x-coordinate at a given environment

pass

Plant y-coordinate at a given environment

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.