The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Enable parallel.level
parameter to specify parallel
granularity in gccm
R API (#310).
Implement the multiview
function for multiview
embedding forecasting (MVE) method (#221).
Integrate lib
parameter in gccm
R API
for library units selection (#278).
Set the default k
to E+2
in the
gccm
R API (#261).
Eliminate redundant computations at the source C++ code level (#233).
Add trend.rm
option in the R API for
embedded
, simplex
, and smap
methods to align with gccm
behavior (#191).
Refactor indexing of lag values and embedding vector generation for spatial lattice (#186,#184) and grid data (#183,#181).
Centered around example cases in the gccm
vignette
(#170).
Default plotting method places the legend in the top-left corner of the plot now (#325).
Refine simplex
& smap
output on the
R side (#263).
embedded
, simplex
,
smap
when input data contains only one attribute column
(#246).sdsfun
package
(#159).tau
parameter in the C++
source code and update the R side API (#154).Implement the smap
function to enable the selection
of the optimal theta parameter (#128).
Add simplex
function to support selecting the
optimal embedding dimension for variables (#98).
Provide an R-level API for generating embeddings (#97).
Now bidirectional mapping in the gccm
result uses a
full join
structure when organized on the R side
(#118).
Support for calculating unidirectional mappings in the
gccm
function (#117).
Relax gccm
C++ source code libsizes
minimum value constraint of E+2
(#109).
Provide a complete GCCM
workflow for spatial lattice
and grid data in the gccm
vignette (#100).
Support testing causal links in GCCM with different
E
and k
for cause and effect variables
(#96).
Add thread settings for gccm
(#94).
Add S-maps
cross-prediction support to
gccm
(#81).
Resolve r crash caused by invalid E
#90 and k
#89 parameter
settings in gccm
.
Fix incorrect Pearson correlation calculation in C++
code when input contains NA (#83).
Encapsulate the gccm
function using the S4 class
(#72).
Add options for tau
, k
, and
progressbar
in gccm
(#69).
Add print
and plot
s3 methods for
gccm
result (#64).
gccm
function returns empty
results when input grid data contains NA values (#61).GCCM
method for spatial lattice and
grid data using pure C++11
.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.